返回顶部
首页 > 资讯 > 操作系统 >JVM详解
  • 132
分享到

JVM详解

jvm开发语言java后端 2023-08-30 15:08:40 132人浏览 薄情痞子
摘要

JVM 执行流程 程序在执行之前先要把java代码转换成字节码(class文件),JVM 首先需要把字节码通过一定的方式 **类加载器(ClassLoader) **把文件加载到内存中 **运行时数据区(Runtime Data Area)

JVM 执行流程

程序在执行之前先要把java代码转换成字节码(class文件),JVM 首先需要把字节码通过一定的方式 **类加载器(ClassLoader) **把文件加载到内存中 **运行时数据区(Runtime Data Area) **,而字节码 文件是 JVM 的一套指令集规范,并不能直接交个底层操作系统去执行,因此需要特定的命令解析器 **执行引擎(Execution Engine)**将字节码翻译成底层系统指令再交由CPU去执行,而这个过程中需要调 用其他语言的接口 **本地库接口(Native Interface) **来实现整个程序的功能,这就是这4个主要组成部分的职责与功能。
1689650564999.png
JVM 主要通过分为以下 4 个部分,来执行 Java 程序的,它们分别是:

  1. 类加载器(ClassLoader)
  2. 运行时数据区(Runtime Data Area)
  3. 执行引擎(Execution Engine)
  4. 本地库接口(Native Interface)

JVM 运行时数据区

1689650816082.png

堆(线程共享)

堆的作用:程序中创建的所有对象都在保存在堆中。
我们常见的 JVM 参数设置 -Xms10m 最小启动内存是针对堆的,-Xmx10m 最大运行内存也是针对堆的。(ms 是 memory start 简称,mx 是 memory max 的简称。)
堆里面分为两个区域:新生代和老生代,新生代放新建的对象,当经过一定 GC 次数之后还存活的对象会放入老生代。新生代还有 3 个区域:一个 Eden + 两个 Survivor(S0/S1)。
1692235067191.png
垃圾回收的时候会将 Eden 中存活的对象放到一个未使用的 Survivor 中,并把当前的 Endn 和正在使用的 Survivor 清除掉。

Java虚拟机栈(线程私有)

Java 虚拟机栈的作用:Java 虚拟机栈的生命周期和线程相同,Java 虚拟机栈描述的是 Java 方法执行的
内存模型:每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。咱们常说的堆内存、栈内存中,栈内存指的就是虚拟机栈。
Java 虚拟机栈中包含了以下 4 部分:

  1. 局部变量表: 存放了编译器可知的各种基本数据类型(8大基本数据类型)、对象引用。局部变量表 所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在执行期间不会改变局部变量表大小。简单来说就是存放方法参数和局部变量。
  2. 操作栈:每个方法会生成一个先进后出的操作栈。
  3. 动态链接:指向运行时常量池的方法引用。
  4. 方法返回地址:PC 寄存器的地址。
    **什么是线程私有? **
    由于JVM的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现,因此在任何一个确定的时刻,一个处理器(多核处理器则指的是一个内核)都只会执行一条线程中的指令。因此为了切换线程后能恢复到正确的执行位置,每条线程都需要独立的程序计数器,各条线程之间计数器互不影响,独立存储。我们就把类似这类区域称之为"线程私有"的内存。

本地方法栈(线程私有)

本地方法栈和虚拟机栈类似,只不过 Java 虚拟机栈是给 JVM 使用的,而本地方法栈是给本地方法使用的

程序计数器(线程私有)

程序计数器的作用:用来记录当前线程执行的行号的。
程序计数器是一块比较小的内存空间,可以看做是当前线程所执行的字节码的行号指示器。
如果当前线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是一个Native方法,这个计数器值为空。
程序计数器内存区域是唯一一个在_JVM_规范中没有规定任何_OOM_情况的区域

方法区(线程共享)

方法区的作用:用来存储被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据的。
在《Java虚拟机规范中》把此区域称之为“方法区”,而在 HotSpot 虚拟机的实现中,在 jdk 7 时此区域 叫做永久代(PermGen),JDK 8 中叫做元空间(Metaspace)。
**运行时常量池 **
运行时常量池是方法区的一部分,存放字面量与符号引用。
**字面量 : 字符串(JDK 8 移动到堆中) 、final常量、基本数据类型的值。 **
符号引用 : 类和结构的完全限定名、字段的名称和描述符、方法的名称和描述符。
1692237641768.png

内存布局中的异常问题

Java堆用于存储对象实例,只要不断的创建对象,并且保证GC Roots到对象之间有可达路径来避免来 GC清除这些对象,那么在对象数量达到最大堆容量后就会产生内存溢出异常。

配置 idea 的启动参数:
JVM 参数为:-Xmx20m -Xms20m -XX:+HeapDumpOnOutOfMemoryError
1692237780482.png

Java堆内存的OOM异常是实际应用中最常见的内存溢出情况。当出现Java堆内存溢出时,异常堆栈信息"java.lang.OutOfMemoryError"会进一步提示"Java heap space"。当出现"Java heap space"则很明确的告知我们,OOM发生在堆上。
此时要对Dump出来的文件进行分析,以MAT为例。分析问题的产生到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)
内存泄漏 : 泄漏对象无法被GC
内存溢出 : 内存对象确实还应该存活。此时要根据JVM堆参数与物理内存相比较检查是否还应该把JVM堆内存调大;或者检查对象的生命周期是否过长。

**虚拟机栈和本地方法栈溢出 **
由于我们HotSpot虚拟机将虚拟机栈与本地方法栈合二为一,因此对于HotSpot来说,栈容量只需要由-Xss参数来设置。
关于虚拟机栈会产生的两种异常:

  • 如果线程请求的栈深度大于虚拟机所允许的最大深度,会抛出StackOverFlow异常
  • 如果虚拟机在拓展栈时无法申请到足够的内存空间,则会抛出OOM异常

JVM 类加载

① 类加载过程

生命周期是这样的:
1692238567746.png

1) 加载

“加载”(Loading)阶段是整个“类加载”(Class Loading)过程中的一个阶段,它和类加载 Class Loading 是不同的,一个是加载 Loading 另一个是类加载 Class Loading,所以不要把二者搞混了。
在加载 Loading 阶段,Java虚拟机需要完成以下三件事情:
1)通过一个类的全限定名来获取定义此类的二进制字节流。
2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构
3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

2) 验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信 息被当作代码运行后不会危害虚拟机自身的安全
验证选项:

  • 文件格式验证
  • 字节码验证
  • 符号引用验证…

3) 准备

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段。
比如此时有这样一行代码:
public static int value = 123;
它是初始化 value 的 int 值为 0,而非 123。

4) 解析

解析阶段是 Java 虚拟机将常量池内的符号引用替换为直接引用的过程,也就是初始化常量的过程。

5) 初始化

初始化阶段,Java 虚拟机真正开始执行类中编写的 Java 程序代码,将主导权移交给应用程序。初始化阶段就是执行类构造器方法的过程。

② 双亲委派模型

站在 Java 虚拟机的角度来看,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用 c++ 语言实现,是虚拟机自身的一部分;另外一种就是其他所有的类加载器,这些类加载器都由Java语言实现,独立存在于虚拟机外部,并且全都继承自抽象类 java.lang.ClassLoader。
站在 Java 开发人员的角度来看,类加载器就应当划分得更细致一 些。自 JDK 1.2 以来,Java 一直保持着三层类加载器、双亲委派的类加载架构器。

什么是双亲委派模型?

如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无 法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载。
1692239264697.png
1692239298729.png
启动类加载器:加载 JDK 中 lib 目录中 Java 的核心类库,即$JAVA_HOME/lib目录。 扩展类加载器。加载 lib/ext 目录下的类。
应用程序类加载器:加载我们写的应用程序。
自定义类加载器:根据自己的需求定制类加载器。

双亲委派模型的优点

  1. 避免重复加载类:比如 A 类和 B 类都有一个父类 C 类,那么当 A 启动时就会将 C 类加载起来,那么在 B 类进行加载时就不需要在重复加载 C 类了。
  2. 安全性:使用双亲委派模型也可以保证了 Java 的核心 api 不被篡改,如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 java.lang.Object类的话,那么程序运行的时候,系统就会出现多个不同的 Object 类,而有些 Object 类又是用户自己提供的因此安全性就不能得到保证了。

③ 破坏双亲委派模型

双亲委派模型虽然有其优点,但在某些情况下也存在一定的问题,比如 Java 中 SPI(Service Provider Interface,服务提供接口)机制中的 JDBC 实现。

JDBC 的 Driver 接口定义在 JDK 中,其实现由各个数据库的服务商来提供,比如 Mysql 驱动包。我们
先来看下 JDBC 的核心使用代码:

public class JdbcTest {    public static void main(String[] args){        Connection connection = null;        try {            connection = DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/test","root","awakeyo");       } catch (sqlException e) {            e.printStackTrace();       }        System.out.println(connection.getClass().getClassLoader());        System.out.println(Thread.currentThread().getContextClassLoader());        System.out.println(Connection.class.getClassLoader());   }}

然后我们进入 DriverManager 的源码类就会发现它是存在系统的 rt.jar 中的,如下图所示:
1692240058328.png
由双亲委派模型的加载流程可知 rt.jar 是有顶级父类 Bootstrap ClassLoader 加载的,如下图所示:
1692240192272.png
而当我们进入它的 getConnection 源码是却发现,它在调用具体的类实现时,使用的是子类加载器(线程上下文加载器 Thread.currentThread().getContextClassLoader )来加载具体的数据库数据库包(如 mysql 的 jar 包),源码如下:

@CallerSensitivepublic static Connection getConnection(String url,java.util.Properties info) throws SQLException { return (getConnection(url, info, Reflection.getCallerClass()));}private static Connection getConnection(String url, java.util.Properties info, Class<?> caller) throws SQLException {        ClassLoader callerCL = caller != null ? caller.getClassLoader() : null;        synchronized(DriverManager.class) {            // synchronize loading of the correct classloader.            if (callerCL == null) {              //获取线程上下为类加载器                callerCL = Thread.currentThread().getContextClassLoader();           }       }        if(url == null) {            throw new SQLException("The url cannot be null", "08001");       }        println("DriverManager.getConnection(\"" + url + "\")");        SQLException reason = null;        for(DriverInfo aDriver : reGISteredDrivers) {         // isDriverAllowed 对于 mysql 连接 jar 进行加载            if(isDriverAllowed(aDriver.driver, callerCL)) {                try {                    println("   trying " + aDriver.driver.getClass().getName());                    Connection con = aDriver.driver.connect(url, info);                    if (con != null) {                        // Success!                        println("getConnection returning " + aDriver.driver.getClass().getName());                        return (con);                   }               } catch (SQLException ex) {                    if (reason == null) {                        reason = ex;                   }               }           } else {                println("   skipping: " + aDriver.getClass().getName());           }       }        if (reason != null)   {            println("getConnection failed: " + reason);            throw reason;       }        println("getConnection: no suitable driver found for "+ url);        throw new SQLException("No suitable driver found for "+ url, "08001");   }

这样一来就破坏了双亲委派模型,因为 DriverManager 位于 rt.jar 包,由 BootStrap 类加载器加载,而其 Driver 接口的实现类是位于服务商提供的 Jar 包中,是由子类加载器(线程上下文加载器
Thread.currentThread().getContextClassLoader )来加载的,这样就破坏了双亲委派模型了(双亲委派模型讲的是所有类都应该交给父类来加载,但 JDBC 显然并不能这样实现)。它的交互流程图如下所
示:
1692240455408.png

垃圾回收相关

Java堆中存放着几乎所有的对象实例,垃圾回收器在对堆进行垃圾回收前,首先要判断这些对象哪些还存活,哪些已经"死去"。判断对象是否已"死"有如下几种算法
**内存 VS 对象 **
在 Java 中,所有的对象都是要存在内存中的(也可以说内存中存储的是一个个对象),因此我们将内存回收,也可以叫做死亡对象的回收。

① 死亡对象的判断算法

a) 引用计数算法

引用计数描述的算法为:
给对象增加一个引用计数器,每当有一个地方引用它时,计数器就+1;当引用失效时,计数器就-1;任何时刻计数器为0的对象就是不能再被使用的,即对象已"死"。
引用计数法实现简单,判定效率也比较高,在大部分情况下都是一个不错的算法。比如python语言就采用引用计数法进行内存管理。
**但是,在主流的JVM中没有选用引用计数法来管理内存,最主要的原因就是引用计数法无法解决对象的循环引用问题 **
范例:观察循环引用问题

public class Test {     public Object instance = null;     private static int _1MB = 1024 * 1024;     private byte[] bigSize = new byte[2 * _1MB];     public static void testGC() {         Test test1 = new Test();         Test test2 = new Test();         test1.instance = test2;         test2.instance = test1;         test1 = null;         test2 = null;         // 强制jvm进行垃圾回收         System.gc();     }     public static void main(String[] args) {     testGC();     }}[GC (System.gc())  6092K->856K(125952K), 0.0007504 secs]

从结果可以看出,GC日志包含" 6092K->856K(125952K)",意味着虚拟机并没有因为这两个对象互相引用就不回收他们。即JVM并不使用引用计数法来判断对象是否存活

b) 可达性分析算法

在上面我们讲了,Java并不采用引用计数法来判断对象是否已"死",而采用"可达性分析"来判断对象是否存活(同样采用此法的还有C#、Lisp-最早的一门采用动态内存分配的语言)。
此算法的核心思想为 : 通过一系列称为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索走过的路径称之为"引用链",当一个对象到GC Roots没有任何的引用链相连时(从GC Roots到这个对象不可达)时,证明此对象是不可用的。以下图为例:
1692240902091.png
对象Object5-Object7之间虽然彼此还有关联,但是它们到GC Roots是不可达的,因此他们会被判定为可回收对象。
在Java语言中,可作为GC Roots的对象包含下面几种:

  1. 虚拟机栈(栈帧中的本地变量表)中引用的对象;
  2. 方法区中类静态属性引用的对象;
  3. 方法区中常量引用的对象;
  4. 本地方法栈中 JNI(Native方法)引用的对象。
    从上面我们可以看出“引用”的功能,除了最早我们使用它(引用)来查找对象,现在我们还可以使用“引用”来判断死亡对象了。所以在 JDK1.2 时,Java 对引用的概念做了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)四种,这四种引用的强度依次递减。
  1. 强引用 : 强引用指的是在程序代码之中普遍存在的,类似于"Object obj = new Object()"这类的引用,只要强引用还存在,垃圾回收器永远不会回收掉被引用的对象实例。
  2. 软引用 : 软引用是用来描述一些还有用但是不是必须的对象。对于软引用关联着的对象,在系统将要发生内存溢出之前,会把这些对象列入回收范围之中进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK1.2之后,提供了SoftReference类来实现软引用。
  3. 弱引用 : 弱引用也是用来描述非必需对象的。但是它的强度要弱于软引用。被弱引用关联的对象只能生存到下一次垃圾回收发生之前。当垃圾回收器开始进行工作时,无论当前内容是否够用,都会回收掉只被弱引用关联的对象。在JDK1.2之后提供了WeakReference类来实现弱引用。
  4. 虚引用 : 虚引用也被称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK1.2之后,提供PhantomReference类来实现虚引用。

② 垃圾回收算法

a) 标记-清除算法 (新生代)

"标记-清除"算法是最基础的收集算法。算法分为"标记"和"清除"两个阶段 : 首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。后续的收集算法都是基于这种思路并对其不足加以改进而已。
"标记-清除"算法的不足主要有两个 :

  1. 效率问题 : 标记和清除这两个过程的效率都不高
  2. 空间问题 : 标记清除后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行中需要分配较大对象时,无法找到足够连续内存而不得不提前触发另一次垃圾收集。
    1692241364503.png
b) 复制算法 (新生代)

"复制"算法是为了解决"标记-清理"的效率问题。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这块内存需要进行垃圾回收时,会将此区域还存活着的对象复制到另一块上面,然后再把已经使用过的内存区域一次清理掉。这样做的好处是每次都是对整个半区进行内存回收,内存分配时也就不需要考虑内存碎片等复杂情况,只需要移动堆顶指针,按顺序分配即可。此算法实现简单,运行高效。算法的执行流程如下图 :
1692241508870.png
新生代中98%的对象都是"朝生夕死"的,所以并不需要按照1 : 1的比例来划分内存空间,而是将内存(新生代内存)分为一块较大的Eden(伊甸园)空间和两块较小的Survivor(幸存者)空间,每次使用Eden和其中一块Survivor(两个Survivor区域一个称为From区,另一个称为To区域)。当回收时,将Eden和 Survivor中还存活的对象一次性复制到另一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。
当Survivor空间不够用时,需要依赖其他内存(老年代)进行分配担保
HotSpot默认Eden与Survivor的大小比例是8 : 1,也就是说Eden:Survivor From : Survivor To = 8:1:1。所以每次新生代可用内存空间为整个新生代容量的90%,而剩下的10%用来存放回收后存活的对象。
HotSpot实现的复制算法流程如下:

  1. 当Eden区满的时候,会触发第一次Minor gc,把还活着的对象拷贝到Survivor From区;当Eden区再次触发Minor gc的时候,会扫描Eden区和From区域,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden和From区域清空。
  2. 当后续Eden又发生Minor gc的时候,会对Eden和To区域进行垃圾回收,存活的对象复制到From区域,并将Eden和To区域清空。
  3. 部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代
c) 标记-整理算法 (老年代)

复制收集算法在对象存活率较高时会进行比较多的复制操作,效率会变低。因此在老年代一般不能使用复制算法。
针对老年代的特点,提出了一种称之为"标记-整理算法"。标记过程仍与"标记-清除"过程一致,但后续步骤不是直接对可回收对象进行清理,而是让所有存活对象都向一端移动,然后直接清理掉端边界以外的内存。流程图如下:
1692242022575.png

d) 分代算法

分代算法和上面讲的 3 种算法不同,分代算法是通过区域划分,实现不同区域和不同的垃圾回收策略,从而实现更好的垃圾回收。这就好比中国的一国两制方针一样,对于不同的情况和地域设置更符合当地的规则,从而实现更好的管理,这就时分代算法的设计思想。
当前 JVM 垃圾收集都采用的是"分代收集(Generational Collection)"算法,这个算法并没有新思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代。在新生代中,每次垃圾回收都有大批对象死去,只有少量存活,因此我们采用复制算法;而老年代中对象存活率高、没有额外空间对它进行分配担保,就必须采用"标记-清理"或者"标记-整理"算法
**哪些对象会进入新生代?哪些对象会进入老年代? **
新生代:一般创建的对象都会进入新生代;
老年代:大对象和经历了 N 次(一般情况默认是 15 次)垃圾回收依然存活下来的对象会从新生代移动到老年代。

  1. Minor GC又称为新生代GC : 指的是发生在新生代的垃圾收集。因为Java对象大多都具备朝生夕灭的特性,因此Minor GC(采用复制算法)非常频繁,一般回收速度也比较快。
  2. Full GC 又称为 老年代GC或者Major GC : 指发生在老年代的垃圾收集。出现了Major GC,经常会伴随至少一次的Minor GC(并非绝对,在Parallel Scavenge收集器中就有直接进行Full GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

③ 垃圾收集器

如果说上面我们讲的收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。垃圾收集器的作用:垃圾收集器是为了保证程序能够正常、持久运行的一种技术,它是将程序中不用的死亡对象也就是垃圾对象进行清除,从而保证了新对象能够正常申请到内存空间。
以下这些收集器是 HotSpot 虚拟机随着不同版本推出的重要的垃圾收集器:
1692242256787.png

  • 并行(Parallel) : 指多条垃圾收集线程并行工作,用户线程仍处于等待状态
  • 并发(Concurrent) : 指用户线程与垃圾收集线程同时执行(不一定并行,可能会交替执行),用户程序继续运行,而垃圾收集程序在另外一个CPU上。
  • 吞吐量:就是CPU用于运行用户代码的时间与CPU总消耗时间的比值。

**为什么会有这么多垃圾收集器? **
自从有了 Java 语言就有了垃圾收集器,这么多垃圾收集器其实是历史发展的产物。最早的垃圾收集器为 Serial,也就是串行执行的垃圾收集器,Serial Old 为串行的老年代收集器,而随着时间的发展,为了提升更高的性能,于是有了 Serial 多线程版的垃圾收集器 ParNew。后来人们想要更高吞吐量 的垃圾收集器,吞吐量是指单位时间内成功回收垃圾的数量,于是就有了吞吐量优先的垃圾收集器 Parallel Scavenge(吞吐量优先的新生代垃圾收集器)和 Parallel Old(吞吐量优先的老年代垃圾收集器)。随着技术的发展后来又有了 CMS(Concurrent Mark Sweep)垃圾收集器,CMS 可以兼顾吞吐量和以获取最短回收停顿时间为目标的收集器,在 JDK 1.8(包含)之前 BS 系统的主流垃圾收集器,而在 JDK 1.8 之后,出现了第一个既不完全属于新生代也不完全属于老年代的垃圾收集器 G1(Garbage First),G1 提供了基本不需要停止程序就可以收集垃圾的技术.

a) Serial收集器(新生代收集器,串行GC)(停止整个程序,Client模式)

Serial 收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。
**特性: **
这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World,译为停止整个程序,简称 STW)。
**应用场景: **
Serial收集器是虚拟机运行在Client模式下的默认新生代收集器。
**优势: **
简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。 实际上到现在为止 : 它依然是虚拟机运行在Client模式下的默认新生代收集器
1692242987242.png

b) ParNew收集器(新生代收集器,并行GC)(Server模式)

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与 Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。
**特性 : **
Serial收集器的多线程版本
**应用场景 : **
ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器。
作为Server的首选收集器之中有一个与性能无关的很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。
在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。
不幸的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者 Serial收集器中的一个。
**对比分析: **
与Serial收集器对比:
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。
1692243125064.png

c) Parallel Scavenge收集器(新生代收集器,并行GC)

特性: **
Parallel Scavenge收集器是一个
新生代收集器**,它也是使用复制算法的收集器,又是并行的多线程收集器。
Parallel Scavenge收集器使用两个参数控制吞吐量:
直观上,只要最大的垃圾收集停顿时间越小,吞吐量是越高的,但是**GC停顿时间的缩短是以牺牲吞吐量和新生代空间作为代价的。**比如原来10秒收集一次,每次停顿100毫秒,现在变成5秒收集一次,每次停顿70毫秒。停顿时间下降的同时,吞吐量也下降了。
**应用场景: **
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
对比分析: **
Parallel Scavenge收集器 VS CMS等收集器: **
Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个
可控制的吞吐量
(Throughput)。
由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。
**Parallel Scavenge收集器 VS ParNew收集器: **
Parallel Scavenge收集器与ParNew收集器的一个重要区别是它具有自适应调节策略。
GC自适应的调节策略:
Parallel Scavenge收集器有一个参数- XX:+UseAdaptiveSizePolicy 。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC ErGonomics)。

d) Serial Old收集器(老年代收集器,串行GC)

特性: **
Serial Old是Serial收集器的
老年代版本**,它同样是一个单线程收集器,使用标记-整理算法。
应用场景: **
Client模式 **
Serial Old收集器的主要意义也是在于给Client模式下的虚拟机使用。
Server模式 **
如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。
1692243414212.png
e) Parallel Old收集器(老年代收集器,并行GC)
特性: **
Parallel Old是Parallel Scavenge收集器的
老年代版本
,使用
多线程
和**“标记-整理”**算法。
**应用场景: **
在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器外别无选择(Parallel Scavenge收集器无法与CMS收集器配合工作)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合。
1692243559979.png

f) CMS收集器(老年代收集器,并发GC)

**特性: **
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:
初始标记(CMS initial mark)
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
并发标记(CMS concurrent mark)
并发标记阶段就是进行GC Roots Tracing的过程。
重新标记(CMS remark)
重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop The World”。
并发清除(CMS concurrent sweep)
并发清除阶段会清除对象。
**由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。 **
**优点: **
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:**并发收集、低停顿。 **
**缺点: **
CMS收集器对CPU资源非常敏感
其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/ 4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。
CMS收集器无法处理浮动垃圾
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。
CMS收集器会产生大量空间碎片
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。
1692243664967.png

g) G1收集器(唯一一款全区域的垃圾回收器) (heap memory很大)

G1(Garbage First)垃圾回收器是用在heap memory很大的情况下,把heap划分为很多很多的region块,然后并行的对其进行垃圾回收。
G1垃圾回收器在清除实例所占用的内存空间后,还会做内存压缩。
G1垃圾回收器回收region的时候基本不会STW,而是基于 most garbage优先回收(整体来看是基于"标 记-整理"算法,从局部(两个region之间)基于"复制"算法) 的策略来对region进行垃圾回收的。
结果如下图:
1692243703199.png
S表示属于Survivor内存区域,T表示属于Tenured内存区域。图中空白的表示未使用的内存空间。G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。这种内存区域主要用于存储大对象-即大小超过一个region大小的50%的对象。
**年轻代垃圾收集 **
在G1垃圾收集器中,年轻代的垃圾回收过程使用复制算法。把Eden区和Survivor区的对象复制到新的 Survivor区域。
如下图:
1692243735044.png

老年代垃收集 **
对于老年代上的垃圾收集,G1垃圾收集器也分为4个阶段,基本跟CMS垃圾收集器一样,但略有不同:
初始标记(Initial Mark)阶段 - 同CMS垃圾收集器的Initial Mark阶段一样,G1也需要暂停应用程序的执行,它会标记从根对象出发,在根对象的第一层孩子节点中标记所有可达的对象。但是G1的垃圾收集器的Initial Mark阶段是跟minor gc一同发生的。也就是说,在G1中,你不用像在CMS那样,单独暂停应用程序的执行来运行Initial Mark阶段,而是在G1触发
minor gc的时候一并将年老代上的Initial Mark给做了。
并发标记(Concurrent Mark)阶段 - 在这个阶段G1做的事情跟CMS一样。但G1同时还多做了一件事情,就是如果在Concurrent Mark阶段中,发现哪些Tenured region中对象的存活率很小或者基本没有对象存活,那么G1就会在这个阶段将其回收掉,而不用等到后面的clean up阶段。这也是Garbage First名字的由来。同时,在该阶段,G1会计算每个 region的对象存活率,方便后面的clean up阶段使用 。最终标记(CMS中的Remark阶段) - 在这个阶段G1做的事情跟CMS一样, 但是采用的算法不同,G1采用一种叫做SATB(snapshot-at-the-begining)的算法能够在Remark阶段更快的标记可达对象。
筛选回收(Clean up/Copy)阶段 - 在G1中,没有CMS中对应的Sweep阶段。相反 它有一个 Clean up/Copy阶段,在这个阶段中,G1会挑选出那些对象存活率低的region进行回收,这个阶段也是和minor gc一同发生的,如下图所示:
1692243814044.png
G1(Garbage-First)是一款面向
服务端应用**的垃圾收集器。HotSpot开发团队赋予它的使命是未来可以替换掉JDK 1.5中发布的CMS收集器。 如果你的应用追求低停顿,G1可以作为选择;如果你的应用追求吞吐量,G1并不带来特别明显的好处。
**④ 总结:一个对象的一生 **
一个对象的一生:我是一个普通的 Java 对象,我出生在 Eden 区,在 Eden 区我还看到和我长的很像的小兄弟,我们在 Eden 区中玩了挺长时间。有一天Eden区中的人实在是太多了,我就被迫去了 Survivor 区的 “From” 区(S0 区),自从去了 Survivor 区,我就开始漂了,有时候在 Survivor 的 “From”区, 有时候在 Survivor 的 “To” 区(S1 区),居无定所。直到我 18 岁的时候,爸爸说我成人了,该去社会 上闯闯了。于是我就去了年老代那边,年老代里,人很多,并且年龄都挺大的,我在这里也认识了很多人。在老年代里,我生活了很多年(每次GC加一岁)然后被回收了。
1692243873138.png

JMM

JVM定义了一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,C/C++直接使用物理硬件和操作系统的内存模型,因此,会由于不同平台下的内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另一套平台上并发访问经常出错。

① 主内存与工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在JVM中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量包括实例字段、静态字段和构成数组对象的元素,但不包括局部变量和方法参数,因为后两者是线程私有的,不会被线程共享。
Java内存模型规定了所有的变量都存储在主内存中。每条线程还有自己的工作内存,线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。线程、主内存、工作内存三者的交互关系如下所示 :
1692243966746.png

② 内存间交互操作

关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存中拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了如下8种操作来完成。JVM实现时必须保证下面提及的每一种操作的原子的、不可再分的。

  • lock(定) : 作用于主内存的变量,它把一个变量标识为一条线程独占的状态
  • unlock(解锁) : 作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
  • read(读取) : 作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
  • load(载入) : 作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
  • use(使用) : 作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎。
  • assign(赋值) : 作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量。
  • store(存储) : 作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便后续的write操作使用。
  • write(写入) : 作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变 量中。

**Java内存模型的三大特性 : **
原子性 : 由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和
read。大致可以认为,基本数据类型的访问读写是具备原子性的。如若需要更大范围的原子性,
需要synchronized关键字约束。(即一个操作或者多个操作 要么全部执行并且执行的过程不会被任
何因素打断,要么就都不执行)
可见性 : 可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。
volatile、synchronized、final三个关键字可以实现可见性。
有序性 : 如果在本线程内观察,所有的操作都是有序的;如果在线程中观察另外一个线程,所有的
操作都是无序的。前半句是指"线程内表现为串行",后半句是指"指令重排序"和"工作内存与主内存同步延迟"现象。
Java内存模型具备一些先天的“有序性”,即不需要通过任何手段就能够得到保证的有序性,这个通常也称为 **happens-before **原则。如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性,虚拟机可以随意地对它们进行重排序。
下面就来具体介绍下happens-before原则(先行发生原则):

  • 程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作
  • 锁定规则:一个unLock操作先行发生于后面对同一个锁的lock操作
  • volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作
  • 传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发 生于操作C
  • 线程启动规则:Thread对象的start()方法先行发生于此线程的每个一个动作
  • 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生
  • 线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法
  • 结束、Thread.isAlive()的返回值手段检测到线程已经终止执行
  • 对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始

也就是说,要想并发程序正确地执行,必须要保证原子性、可见性以及有序性。只要有一个没有被保
证,就有可能会导致程序运行不正确。

③ volatile型变量的特殊规则

关键字volatile可以说是JVM提供的最轻量级的同步机制,但是它并不容易完全被正确理解和使用。JVM
内存模型对volatile专门定义了一些特殊的访问规则。
当一个变量定义为volatile之后,它将具备两种特性。
第一:保证此变量对所有线程的可见性,这里的"可见性"是指 : 当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量做不到这一点,普通变量的值在线程间传递均需要通过主内存来完成。例如:线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成之后再从主内存进行读取操作,新值才会对线程B可见。
关于volatile变量的可见性,经常会被开发人员误解。**volatile变量在各个线程中是一致的,但是 **
**volatile变量的运算在并发下一样是不安全的。**原因在于Java里面的运算并非原子操作。
范例 : volatile变量自增操作

package com.company;public class Main {    public static volatile int num = 0;    public static void increase() {        num++;   }    public static void main(String[] args) {       Thread[] threads = new Thread[10];        for (int i = 0; i < 10; i++) {            threads[i] = new Thread(new Runnable() {                @Override                public void run() {                    for (int j = 0; j < 100; j++) {                        increase();                   }               }           });            threads[i].start();       }        while (Thread.activeCount() > 2) {            Thread.yield();       }        System.out.println(num);   }}

问题就在于num++之中,实际上num++等同于num = num+1。volatile关键字保证了num的值在取值时是正确的,但是在执行num+1的时候,其他线程可能已经把num值增大了,这样在+1后会把较小的数值同步回主内存之中。
由于volatile关键字只保证可见性,在不符合以下两条规则的运算场景中,我们仍然需要通过加锁
(synchronized或者lock)来保证原子性。

    1. 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值
    1. 变量不需要与其他的状态变量共同参与不变约束

如下代码这类场景就特别适合使用volatile来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来。

volatile boolean shutdownRequested;public void shutdown() {    shutdownRequested = true;}public void work() {    while(!shutdownRequested) {        //do stuff   }}

第二:使用volatile变量的语义是禁止指令重排序。普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序和程序代码中执行的顺序一致。
volatile关键字禁止指令重排序有两层意思:

  • 1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;
  • 2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。

举个简单的例子:

//x、y为非volatile变量//flag为volatile变量x = 2;        //语句1y = 0;        //语句2flag = true;  //语句3x = 4;        //语句4y = -1;       //语句5

由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2
前面,也不会将语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。
并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的
执行结果对语句3、语句4、语句5是可见的。
范例 : 指令重排序

Map configOptions;char[] configText;volatile boolean initialized = false;//假设以下代码在线程A执行//模拟读取配置文件信息,当读取完成后将initialized设置为true以通知其他线程配置可用configOptions = new HashMap();configText = readConfigFile(fileName);processConfigOptions(configText,configOptions);initialized = true;//假设以下代码在线程B执行//等待initialized为true,代表线程A已经把配置信息初始化完成while(!initialized) {    sleep();}//使用线程A初始化好的配置信息doSomethingWithConfig();

单例模式中的Double Check:
双重检验锁模式(double checked locking pattern),是一种使用同步块加锁的方法。程序员称其为双重检查锁,因为会有两次检查 instance == null,一次是在同步块外,一次是在同步块内。为什么在同步块内还要再检验一次?因为可能会有多个线程一起进入同步块外的 if,如果在同步块内不进行二次检验的话就会生成多个实例了。

public static Singleton getSingleton(){        if(instance==null){ //Single Checked synchronized (Singleton.class){       if(instance==null){ //Double Checked       instance=new Singleton();       }        }   }        return instance;}

这段代码看起来很完美,很可惜,它是有问题。主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。给 instance 分配内存 调用 Singleton的构造函数来初始化成员变量 将instance对象指向分配的内存空间(执行完这步 instance 就为非 null 了) 但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不 能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。我们只需要将 instance 变量声明成 volatile 就可以了。

class Singleton{    // 确保产生的对象完整性    private volatile static Singleton instance = null;    private Singleton() {}    public static Singleton getInstance() {        if(instance==null) { // 检查对象是否初始化            synchronized (Singleton.class) {                if(instance==null) // 确保多线程情况下对象只有一个                    instance = new Singleton();           }       }        return instance;   }}

来源地址:https://blog.csdn.net/qq_53869058/article/details/132456559

--结束END--

本文标题: JVM详解

本文链接: https://lsjlt.com/news/383101.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • JVM详解
    JVM 执行流程 程序在执行之前先要把java代码转换成字节码(class文件),JVM 首先需要把字节码通过一定的方式 **类加载器(ClassLoader) **把文件加载到内存中 **运行时数据区(Runtime Data Area)...
    99+
    2023-08-30
    jvm 开发语言 java 后端
  • 【JVM】JVM内存模型详解
    一、JVM是什么? JVM是Java Virtual Machine(Java虚拟机)的缩写,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。由一套字节码指令集、一组寄存器、一个栈、一个垃圾回收...
    99+
    2023-09-16
    jvm java 面试
  • JVM入门之JVM内存结构内容详解
    一、java代码编译执行过程 源码编译:通过Java源码编译器将Java代码编译成JVM字节码(.class文件) 类加载:通过ClassLoader及其子类来完成...
    99+
    2024-04-02
  • 【JVM】JVM内存模型(详细)
    目录 一.JVM概述1.jvm简介2.jvm作用3.jvm的内存模型 二.类加载器1.类加载器的作用2.加载器的类型3.双亲委派机制的运行过程4.双亲委派机制优缺点5.为什么要破坏双亲委派机制6.破坏双亲委派机制的方式 三....
    99+
    2023-08-16
    jvm java 面试
  • J2ME与JVM的概念详解
    这篇文章主要介绍“J2ME与JVM的概念详解”,在日常操作中,相信很多人在J2ME与JVM的概念详解问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”J2ME与JVM的概念详解”...
    99+
    2024-04-02
  • 详解JVM中的GC调优
    目录那些GC的默认值GC的选择GC的最大线程个数初始化heap size最大的heap size分层编译技术我们到底要什么最大暂停时间吞吐率那些GC的默认值 其实GC或者说JVM的参...
    99+
    2024-04-02
  • JVM方法调用invokevirtual详解
      在java代码运行期间,方法间的调用可以说是最为频繁的了,那么这些方法间的调用在底层的虚拟机又做了什么事情呢?现在就让我们揭开那道神秘的面纱。   JVM调用方法有五条指令,分别...
    99+
    2024-04-02
  • JVM 中的 returnAddress过程详解
    目录数据类型栈帧JVM是虚拟机,也是一种规范,他遵循着冯·诺依曼体系结构的设计原理。冯·诺依曼体系结构中,指出计算机处理的数据和指令都是二进制数,采用存储...
    99+
    2024-04-02
  • Java jvm垃圾回收详解
    目录常见面试题1.JVM内存回收和分配1.1主要的区域?gc测试1.2大对象进入老年代1.3长期存活的对象进入老年代1.4主要进行gc的区域gc的类型Young GcFull Gc1...
    99+
    2024-04-02
  • Java JVM内存区域详解
    目录程序计数器Java虚拟机栈方法/函数如何调用?堆总结原网页:JavaGuide JVM在执行Java程序过程中会把它管理的内存划分成若干个不同的数据区域。JDK1.8和之前的版本...
    99+
    2024-04-02
  • JVM垃圾回收器详解
    这篇文章主要介绍“JVM垃圾回收器详解”,在日常操作中,相信很多人在JVM垃圾回收器详解问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”JVM垃圾回收器详解”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!1 ...
    99+
    2023-06-02
  • Java jvm中Code Cache案例详解
    Code Cache JVM生成的native code存放的内存空间称之为Code Cache;JIT编译、JNI等都会编译代码到native code,其中JIT生成的nativ...
    99+
    2024-04-02
  • JVM内存参数配置详解
    首先我们知道:JVM发生内存错误的类型 1、堆内存泄漏:OutOfMemory:Java heap space 此种内存泄漏,增加内存,只能暂时解决问题,并不能根治问题。必须要优化代...
    99+
    2024-04-02
  • JVM学习- - -虚拟机栈详解
    前言:今天学长带领大家走进JVM学习,让我们一起来学习认识虚拟机栈吧~ 目录 1 虚拟机栈概述 虚拟机栈出现的背景 初步印象 内存中的栈和堆 虚拟机栈基本内容 栈的优点 2 栈的存储单位 栈中存储什么? 栈运行原理 栈帧的内部结构 ...
    99+
    2023-09-12
    jvm 学习 java
  • Java VisualVM监控远程JVM(详解)
    我们经常需要对我们的开发的软件做各种测试, 软件对系统资源的使用情况更是不可少, 目前有多个监控工具, 相比JProfiler对系统资源尤其是内存的消耗是非常庞大,JDK1.6开始自带的VisualVM就是不错的监控工具.这个工具就在JAV...
    99+
    2023-05-30
    java visualvm 监控远程
  • Java JVM虚拟机调优详解
    目录jmap查看内存信息jstackjinfo查看jvm系统参数Jstat查看堆内存使用和类加载的数量信息内存泄漏jmap查看内存信息 jmap histo /pid > ./...
    99+
    2024-04-02
  • 详解jvm双亲委派机制
    目录双亲委派机制类加载器种类双亲委派机制为什么要设计双亲委派机制?自定义类加载器打破双亲委派机制双亲委派机制 ​记录一下JVM的双亲委派机制学习记录。 类加载器种类 ​当我们运行某一...
    99+
    2022-11-13
    jvm双亲委派机制 jvm双亲委派
  • 超详细的JVM 深入解析
    工作之余,想总结一下JVM相关知识。Java运行时数据区:Java虚拟机在执行Java程序的过程中会将其管理的内存划分为若干个不同的数据区域,这些区域有各自的用途、创建和销毁的时间,有些区域随虚拟机进程的启动而存在,有些区域则是依赖用户线程...
    99+
    2023-06-02
  • java虚拟机之JVM调优详解
    目录JVM常用命令行参数1. 查看参数列表2. 基本参数说明:3. 扩展参数说明:虚拟机参数分类什么是调优1.调优步骤:2.调优案例2.1案例一2.2案例二JVM优化总结JVM常用命...
    99+
    2024-04-02
  • 详解JVM之运行时常量池
    目录class文件中的常量池运行时常量池静态常量详解符号引用详解String Pool字符串常量池总结class文件中的常量池 之前我们在讲class文件的结构时,提到了每个clas...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作