返回顶部
首页 > 资讯 > 后端开发 > Python >计算机竞赛 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习
  • 727
分享到

计算机竞赛 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

pythonjava 2023-08-30 10:08:01 727人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单G

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于YOLO实现的口罩佩戴检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

受全球新冠肺炎疫情影响,虽然目前中国疫情防控取 得了良好效果,绝大多数地区处于疫情低风险,但个别地 区仍有零星散发病例和局部聚集性疫情。在机场、地 铁
站、医院等公共服务和重点机构场所规定必须佩戴口罩, 口罩佩戴检查已成为疫情防控的必备操作。目前,口罩 佩戴检查多为人工检查方式,如高铁上会有乘务人员一节
节车厢巡逻检查提醒乘客佩戴口罩,在医院等高危场所也 会有医务人员提醒时刻戴好口罩。人工检查方式存在检 查效率低下、难以及时发现错误佩戴口罩以及未佩戴口罩
行为等弊端。采用深度学习目标检测方法设计一个具有口罩识别功能的防疫系统,可以大大提高检测效率。

2 算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GioU_Loss,以及预测框筛选的DIOU_nms。

2.2 网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

3 关键代码

    class Detect(nn.Module):        stride = None  # strides computed during build        onnx_dynamic = False  # ONNX export parameter            def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer            super().__init__()            self.nc = nc  # number of classes            self.no = nc + 5  # number of outputs per anchor            self.nl = len(anchors)  # number of detection layers            self.na = len(anchors[0]) // 2  # number of anchors            self.grid = [torch.zeros(1)] * self.nl  # init grid            self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid            self.reGISter_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)            self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv            self.inplace = inplace  # use in-place ops (e.g. slice assignment)            def forward(self, x):            z = []  # inference output            for i in range(self.nl):                x[i] = self.m[i](x[i])  # conv                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()                    if not self.training:  # inference                    if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                        y = x[i].sigmoid()                    if self.inplace:                        y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                    else:  # for YOLOv5 on AWS Inferentia https://GitHub.com/ultralytics/yolov5/pull/2953                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy                        wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                        y = torch.cat((xy, wh, y[..., 4:]), -1)                    z.append(y.view(bs, -1, self.no))                return x if self.training else (torch.cat(z, 1), x)            def _make_grid(self, nx=20, ny=20, i=0):            d = self.anchors[i].device            if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')            else:                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])            grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()            anchor_grid = (self.anchors[i].clone() * self.stride[i]) \                .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()            return grid, anchor_grid    class Model(nn.Module):        def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes            super().__init__()            if isinstance(cfg, dict):                self.yaml = cfg  # model dict            else:  # is *.yaml                import yaml  # for torch hub                self.yaml_file = Path(cfg).name                with open(cfg, encoding='ascii', errors='ignore') as f:                    self.yaml = yaml.safe_load(f)  # model dict                # Define model            ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels            if nc and nc != self.yaml['nc']:                LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")                self.yaml['nc'] = nc  # override yaml value            if anchors:                LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')                self.yaml['anchors'] = round(anchors)  # override yaml value            self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist            self.names = [str(i) for i in range(self.yaml['nc'])]  # default names            self.inplace = self.yaml.get('inplace', True)                # Build strides, anchors            m = self.model[-1]  # Detect()            if isinstance(m, Detect):                s = 256  # 2x min stride                m.inplace = self.inplace                m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward                m.anchors /= m.stride.view(-1, 1, 1)                check_anchor_order(m)                self.stride = m.stride                self._initialize_biases()  # only run once                # Init weights, biases            initialize_weights(self)            self.info()            LOGGER.info('')            def forward(self, x, augment=False, profile=False, visualize=False):            if augment:                return self._forward_augment(x)  # augmented inference, None            return self._forward_once(x, profile, visualize)  # single-scale inference, train            def _forward_augment(self, x):            img_size = x.shape[-2:]  # height, width            s = [1, 0.83, 0.67]  # scales            f = [None, 3, None]  # flips (2-ud, 3-lr)            y = []  # outputs            for si, fi in zip(s, f):                xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))                yi = self._forward_once(xi)[0]  # forward                # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save                yi = self._descale_pred(yi, fi, si, img_size)                y.append(yi)            y = self._clip_augmented(y)  # clip augmented tails            return torch.cat(y, 1), None  # augmented inference, train            def _forward_once(self, x, profile=False, visualize=False):            y, dt = [], []  # outputs            for m in self.model:                if m.f != -1:  # if not from previous layer                    x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers                if profile:                    self._profile_one_layer(m, x, dt)                x = m(x)  # run                y.append(x if m.i in self.save else None)  # save output                if visualize:                    feature_visualization(x, m.type, m.i, save_dir=visualize)            return x            def _descale_pred(self, p, flips, scale, img_size):            # de-scale predictions following augmented inference (inverse operation)            if self.inplace:                p[..., :4] /= scale  # de-scale                if flips == 2:                    p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud                elif flips == 3:                    p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr            else:                x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale                if flips == 2:                    y = img_size[0] - y  # de-flip ud                elif flips == 3:                    x = img_size[1] - x  # de-flip lr                p = torch.cat((x, y, wh, p[..., 4:]), -1)            return p            def _clip_augmented(self, y):            # Clip YOLOv5 augmented inference tails            nl = self.model[-1].nl  # number of detection layers (P3-P5)            g = sum(4 ** x for x in range(nl))  # grid points            e = 1  # exclude layer count            i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices            y[0] = y[0][:, :-i]  # large            i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices            y[-1] = y[-1][:, i:]  # small            return y            def _profile_one_layer(self, m, x, dt):            c = isinstance(m, Detect)  # is final layer, copy input as inplace fix            o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs            t = time_sync()            for _ in range(10):                m(x.copy() if c else x)            dt.append((time_sync() - t) * 100)            if m == self.model[0]:                LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")            LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')            if c:                LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")            def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency            # Https://arxiv.org/abs/1708.02002 section 3.3            # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.            m = self.model[-1]  # Detect() module            for mi, s in zip(m.m, m.stride):  # from                b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)                b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)                b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls                mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)            def _print_biases(self):            m = self.model[-1]  # Detect() module            for mi in m.m:  # from                b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)                LOGGER.info(                    ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))            # def _print_weights(self):        #     for m in self.model.modules():        #         if type(m) is Bottleneck:        #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights            def fuse(self):  # fuse model Conv2d() + BatchNORM2d() layers            LOGGER.info('Fusing layers... ')            for m in self.model.modules():                if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv                    delattr(m, 'bn')  # remove batchnorm                    m.forward = m.forward_fuse  # update forward            self.info()            return self            def autoshape(self):  # add AutoShape module            LOGGER.info('Adding AutoShape... ')            m = AutoShape(self)  # wrap model            copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes            return m            def info(self, verbose=False, img_size=640):  # print model information            model_info(self, verbose, img_size)            def _apply(self, fn):            # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers            self = super()._apply(fn)            m = self.model[-1]  # Detect()            if isinstance(m, Detect):                m.stride = fn(m.stride)                m.grid = list(map(fn, m.grid))                if isinstance(m.anchor_grid, list):                    m.anchor_grid = list(map(fn, m.anchor_grid))            return self    def parse_model(d, ch):  # model_dict, input_channels(3)        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")        anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)            layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args            m = eval(m) if isinstance(m, str) else m  # eval strings            for j, a in enumerate(args):                try:                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings                except NameError:                    pass                n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain            if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,                     BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:                c1, c2 = ch[f], args[0]                if c2 != no:  # if not output                    c2 = make_divisible(c2 * gw, 8)                    args = [c1, c2, *args[1:]]                if m in [BottleneckCSP, C3, C3TR, C3Ghost]:                    args.insert(2, n)  # number of repeats                    n = 1            elif m is nn.BatchNorm2d:                args = [ch[f]]            elif m is Concat:                c2 = sum(ch[x] for x in f)            elif m is Detect:                args.append([ch[x] for x in f])                if isinstance(args[1], int):  # number of anchors                    args[1] = [list(range(args[1] * 2))] * len(f)            elif m is Contract:                c2 = ch[f] * args[0] ** 2            elif m is Expand:                c2 = ch[f] // args[0] ** 2            else:                c2 = ch[f]                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module            t = str(m)[8:-2].replace('__main__.', '')  # module type            np = sum(x.numel() for x in m_.parameters())  # number params            m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print            save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist            layers.append(m_)            if i == 0:                ch = []            ch.append(c2)        return nn.Sequential(*layers), sorted(save)

4 数据集

大家可采用公开标注好的数据集。如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,学长以火灾数据集为例!

4.1 安装

通过pip指令即可安装


pip install labelimg

4.2 打开

在命令行中输入labelimg即可打开

在这里插入图片描述

在这里插入图片描述
打开你所需要进行标注的文件夹

4.3 选择yolo标注格式

点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo。

在这里插入图片描述

4.4 打标签

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok。

注:若要删除目标,右键目标区域,delete即可

在这里插入图片描述

4.5 保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

6.1 pyQt实现简单GUI

    from PyQt5 import QtCore, QtGui, QtWidgets    class Ui_Win_mask(object):        def setupUi(self, Win_mask):            Win_mask.setObjectName("Win_mask")            Win_mask.resize(1107, 868)            Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"    "ui.pushButton->setStyleSheet(qstrStylesheet);")            self.frame = QtWidgets.QFrame(Win_mask)            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)            self.frame.setObjectName("frame")            self.pushButton = QtWidgets.QPushButton(self.frame)            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.pushButton.setFont(font)            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")            self.pushButton.setObjectName("pushButton")            self.pushButton_2 = QtWidgets.QPushButton(self.frame)            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.pushButton_2.setFont(font)            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")            self.pushButton_2.setObjectName("pushButton_2")            self.pushButton_3 = QtWidgets.QPushButton(self.frame)            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            font.setStrikeOut(False)            self.pushButton_3.setFont(font)            self.pushButton_3.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")            self.pushButton_3.setObjectName("pushButton_3")            self.frame_2 = QtWidgets.QFrame(Win_mask)            self.frame_2.setGeometry(QtCore.QRect(230, 110, 1031, 861))            self.frame_2.setStyleSheet("")            self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)            self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)            self.frame_2.setObjectName("frame_2")            self.show_picture_page = QtWidgets.QStackedWidget(self.frame_2)            self.show_picture_page.setGeometry(QtCore.QRect(-10, 0, 871, 731))            font = QtGui.QFont()            font.setBold(True)            font.setWeight(75)            self.show_picture_page.setFont(font)            self.show_picture_page.setObjectName("show_picture_page")            self.photo = QtWidgets.QWidget()            self.photo.setObjectName("photo")            self.label = QtWidgets.QLabel(self.photo)            self.label.setGeometry(QtCore.QRect(10, 30, 641, 641))            font = QtGui.QFont()            font.setFamily("Arial")            font.setPointSize(36)            self.label.setFont(font)            self.label.setText("")            self.label.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))            self.label.setObjectName("label")            self.pushButton_4 = QtWidgets.QPushButton(self.photo)            self.pushButton_4.setGeometry(QtCore.QRect(680, 220, 171, 61))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.pushButton_4.setFont(font)            self.pushButton_4.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.pushButton_4.setObjectName("pushButton_4")            self.pushButton_5 = QtWidgets.QPushButton(self.photo)            self.pushButton_5.setGeometry(QtCore.QRect(680, 400, 171, 61))            font = QtGui.QFont()            font.setUnderline(True)            self.pushButton_5.setFont(font)            self.pushButton_5.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.pushButton_5.setObjectName("pushButton_5")            self.show_picture_page.addWidget(self.photo)            self.videos = QtWidgets.QWidget()            self.videos.setObjectName("videos")            self.vid_img = QtWidgets.QLabel(self.videos)            self.vid_img.setGeometry(QtCore.QRect(10, 30, 640, 640))            font = QtGui.QFont()            font.setFamily("Arial")            font.setPointSize(36)            self.vid_img.setFont(font)            self.vid_img.setText("")            self.vid_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))            self.vid_img.setObjectName("vid_img")            self.mp4_detection_btn = QtWidgets.QPushButton(self.videos)            self.mp4_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.mp4_detection_btn.setFont(font)            self.mp4_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.mp4_detection_btn.setObjectName("mp4_detection_btn")            self.vid_stop_btn = QtWidgets.QPushButton(self.videos)            self.vid_stop_btn.setGeometry(QtCore.QRect(680, 400, 171, 61))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.vid_stop_btn.setFont(font)            self.vid_stop_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.vid_stop_btn.setObjectName("vid_stop_btn")            self.show_picture_page.addWidget(self.videos)            self.camera = QtWidgets.QWidget()            self.camera.setObjectName("camera")            self.WEBcam_detection_btn = QtWidgets.QPushButton(self.camera)            self.webcam_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))            self.webcam_detection_btn.setBaseSize(QtCore.QSize(2, 2))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.webcam_detection_btn.setFont(font)            self.webcam_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.webcam_detection_btn.setObjectName("webcam_detection_btn")            self.cam_img = QtWidgets.QLabel(self.camera)            self.cam_img.setGeometry(QtCore.QRect(10, 30, 640, 640))            font = QtGui.QFont()            font.setFamily("Arial")            font.setPointSize(36)            self.cam_img.setFont(font)            self.cam_img.setText("")            self.cam_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))            self.cam_img.setObjectName("cam_img")            self.vid_stop_btn_cma = QtWidgets.QPushButton(self.camera)            self.vid_stop_btn_cma.setGeometry(QtCore.QRect(680, 400, 171, 61))            font = QtGui.QFont()            font.setBold(True)            font.setUnderline(True)            font.setWeight(75)            self.vid_stop_btn_cma.setFont(font)            self.vid_stop_btn_cma.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")            self.vid_stop_btn_cma.setObjectName("vid_stop_btn_cma")            self.show_picture_page.addWidget(self.camera)            self.label_2 = QtWidgets.QLabel(Win_mask)            self.label_2.setGeometry(QtCore.QRect(430, 40, 251, 71))            font = QtGui.QFont()            font.setPointSize(24)            font.setBold(True)            font.setItalic(False)            font.setUnderline(True)            font.setWeight(75)            self.label_2.setFont(font)            self.label_2.setStyleSheet("Font{background-color:rgb(85, 170, 255);}")            self.label_2.setObjectName("label_2")            self.listView = QtWidgets.QListView(Win_mask)            self.listView.setGeometry(QtCore.QRect(-5, 1, 1121, 871))            self.listView.setStyleSheet(" \n"    "background-image: url(:/bg.png);")            self.listView.setObjectName("listView")            self.listView.raise_()            self.frame.raise_()            self.frame_2.raise_()            self.label_2.raise_()                self.retranslateUi(Win_mask)            self.show_picture_page.setCurrentIndex(0)            QtCore.QMetaObject.connectSlotsByName(Win_mask)## 

2 图片识别效果

在这里插入图片描述

6.3 视频识别效果

6.4 摄像头实时识别

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

来源地址:https://blog.csdn.net/m0_43533/article/details/132472331

--结束END--

本文标题: 计算机竞赛 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

本文链接: https://lsjlt.com/news/382594.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作