返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++ RBTree红黑树的性质与实现方法是什么
  • 532
分享到

C++ RBTree红黑树的性质与实现方法是什么

2023-07-05 10:07:20 532人浏览 薄情痞子
摘要

这篇文章主要讲解了“c++ RBTree红黑树的性质与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++ RBTree红黑树的性质与实现方法是什么”吧!一

这篇文章主要讲解了“c++ RBTree红黑树的性质与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++ RBTree红黑树的性质与实现方法是什么”吧!

一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是平衡的 。(既最长路径长度不超过最短路径长度的 2 倍)

ps:树的路径是从根节点走到空节点(此处为NIL 节点)才算一条路径

C++ RBTree红黑树的性质与实现方法是什么

二、红黑树的性质

  • 每个结点不是红色就是黑色

  • 根结点是黑色的

  • 如果一个结点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)

  • 对于每个结点,从该节点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点

  • 每个叶子结点都是黑色的(此处的叶子结点指的是空节点,NIL节点),如果是空树,空节点也是黑色,符合第一个性质

理解最长路径长度不超过最短路径长度的 2 倍:

根据第三个性质:红黑树不会出现连续的红色结点,根据第四个性质:从每个结点到所有后代结点的路径上包含相同数目的黑色结点。

极端场景:最短路径上全黑,一条路径黑色节点的数量,最长路径上是一黑一红相间的路径

C++ RBTree红黑树的性质与实现方法是什么

三、红黑树节点的定义

三叉链结构,对比AVL数节点的定义,把平衡因子替换成节点颜色,采用枚举的方式:

//结点颜色enum Color{RED,BLACK,};template<class K, class V >struct RBTreenode{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Color _col;RBTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_col(RED){}};

这里可以清楚的看到,构造结点时默认设置为红色,问题来了:

如果插入的是黑色结点那就是不符合第四个性质(路径上均包含相同的黑色结点),此时我们必须要去进行维护每条路径的黑色结点

如果插入的是红色结点那就是不符合第三个性质(没有出现连续的红色结点),但是我们并不一定需要调整,如果根刚好为黑色,就不需要进行调整。

所以如果插入为红色结点,不一定会破坏结构,但是如果插入黑色结点我们就必须去进行维护了

C++ RBTree红黑树的性质与实现方法是什么

四、红黑树的插入

红黑树插入的操作部分和AVL树的插入一样:

  • 找到待插入位置

  • 将待插入结点插入到树中

  • 调整:若插入结点的父结点是红色的,我们就需要对红黑树进行调整

前两步大差不差

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论

关键在于对红黑树进行调整:为了能够展示出各种情况,这里有一个基本的模型:

C++ RBTree红黑树的性质与实现方法是什么

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一:cur为红,p为红,g为黑,u存在且为红 :

cur为红,p为红,g为黑,u存在且为红

C++ RBTree红黑树的性质与实现方法是什么

关键看u结点,根结点的颜色为黑色,不能有连续的红色结点,所以上面的情况已经出现连续的红色结点了,此时我们需要进行调整:

把p结点改为黑色,同时把u结点也改为黑色(符合性质四:每条路径上的黑色节点数量相同),最后在把g结点改为红色;如果g是子树的话,g一定会有双亲,为了维持每条路径上黑色节点的数量,g必须变红,不然会多出一个黑色节点,在把g结点当做cur结点继续往上调整,当g为根结点时,在把g置为黑色:

C++ RBTree红黑树的性质与实现方法是什么

代码实现:

      while (parent && parent->_col == RED){Node* grandfater = parent->_parent;if (parent == grandfater->_left){Node* uncle = grandfater->_right;//情况一:u存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfater->_col = RED;cur = grandfater;parent = cur->_parent;}else//其他情况{}}else//parent==grandfater->_right{Node* uncle = grandfater->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfater->_col = RED;cur = grandfater;parent = cur->_parent;}else{}}}_root->_col = BLACK;

情况二:cur为红,p为红,g为黑,u不存在/u为黑,gpc在同一侧:

C++ RBTree红黑树的性质与实现方法是什么

此时u的情况:

如果u结点不存在,则cur一定是新增结点,因为如果cur不是新增结点:则cur和p一定有一个节点时黑色,就不满足每条路径都有相同的黑色结点的性质。

如果u结点存在,则其一定是黑色的,那么c节点原来的颜色一定是黑色,在其子树调整过程中变为了红色

如果p为g的左孩子,cur为p的左孩子,则进行右单旋转;

如果p为g的右孩子,cur为p的右孩子,则进行左单旋转,

同时,p、g变色&ndash;p变黑,g变红

以下情况:u不存在,cur为新增节点,进行右单旋:

C++ RBTree红黑树的性质与实现方法是什么

以下情况:u结点存在且为黑:

C++ RBTree红黑树的性质与实现方法是什么

情况三: cur为红,p为红,g为黑,u不存在/u为黑,gpc不在同一侧:

C++ RBTree红黑树的性质与实现方法是什么

这时候我们就需要进行双旋了:

p为g的左孩子,cur为p的右孩子,对p做左单旋转;

p为g的右孩子,cur为p的左孩子,对p做右单旋转; 旋转之后则转换成了情况2,在继续进行调整即可

C++ RBTree红黑树的性质与实现方法是什么

五、代码实现

送上源码

#pragma once#include <iOStream>#include <assert.h>#include <time.h>using namespace std;enum Color{RED,BLACK,};template<class K, class V >struct RBTreeNode{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Color _col;RBTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_col(RED){}};template<class K,class V>class RBTree{typedef RBTreeNode<K, V> Node;public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED){Node* grandfater = parent->_parent;if (parent == grandfater->_left){Node* uncle = grandfater->_right;//情况一:u存在且为红if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfater->_col = RED;//向上调整cur = grandfater;parent = cur->_parent;}else{//情况2if (cur == parent->_left){RotateR(grandfater);parent->_col = BLACK;grandfater->_col = RED;}//情况3else{//       g//  p//    c RotateL(parent);RotateR(grandfater);cur->_col = BLACK;grandfater->_col = RED;}break;}}else//parent==grandfater->_right{Node* uncle = grandfater->_left;//情况1:u存在且为红色if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;grandfater->_col = RED;//向上调整cur = grandfater;parent = cur->_parent;}else{//情况2:u不存在/u存在为黑色//g//    p//        cif (cur == parent->_right){RotateL(grandfater);grandfater->_col = RED;parent->_col = BLACK;}//情况3//     g //         p //      celse{RotateR(parent);RotateL(grandfater);cur->_col = BLACK;grandfater->_col = RED;}break;}}}//根变黑_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppNode = parent->_parent;subR->_left = parent;parent->_parent = subR;if (ppNode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* ppNode = parent->_parent;parent->_parent = subL;subL->_right = parent;if (ppNode == nullptr){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void InOrder(){_InOrder(_root);}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}bool Check(Node*root,int blackNum,int ref){if (root == nullptr){//cout << blackNum << endl;if (blackNum != ref){cout << "违反规则:本条路径的黑色结点的数量根最左路径不相等" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "违反规则:出现连续的红色结点" << endl;return false;}if (root->_col == BLACK){++blackNum;}return Check(root->_left,blackNum,ref)&& Check(root->_right,blackNum,ref);}bool IsBalance(){if (_root == nullptr){return true;}if (_root->_col != BLACK){return false;}int ref = 0;Node* left = _root;while (left){if (left->_col == BLACK){++ref;}left = left->_left;}return Check(_root,0,ref);}private:Node* _root = nullptr;};void TestRBTree1(){//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };RBTree<int, int> t;for (auto e : a){t.Insert(make_pair(e, e));}t.InOrder();cout << t.IsBalance() << endl;}void TestRBTree2(){srand(time(0));const size_t N = 100000;RBTree<int, int> t;for (size_t i = 0; i < N; i++){size_t x = rand();t.Insert(make_pair(x, x));}cout << t.IsBalance() << endl;}

感谢各位的阅读,以上就是“C++ RBTree红黑树的性质与实现方法是什么”的内容了,经过本文的学习后,相信大家对C++ RBTree红黑树的性质与实现方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

--结束END--

本文标题: C++ RBTree红黑树的性质与实现方法是什么

本文链接: https://lsjlt.com/news/351090.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C++ RBTree红黑树的性质与实现方法是什么
    这篇文章主要讲解了“C++ RBTree红黑树的性质与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++ RBTree红黑树的性质与实现方法是什么”吧!一...
    99+
    2023-07-05
  • C++ RBTree红黑树的性质与实现
    目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Re...
    99+
    2023-03-08
    C++ RBTree红黑树 C++ RBTree C++ 红黑树
  • 红黑树的实现原理是什么
    本篇文章给大家分享的是有关红黑树的实现原理是什么,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、摘要平衡二叉查找树是一个高度平衡的二叉树,也...
    99+
    2024-04-02
  • Spring事务的实现方法与本质是什么
    这篇文章主要介绍了Spring事务的实现方法与本质是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Spring事务的实现方法与本质是什么文章都会有所收获,下面我们一起来看看吧。一、Spring事务的基础知识...
    99+
    2023-07-05
  • php实现二叉树的方法是什么
    这篇“php实现二叉树的方法是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“php实现二叉树的方法是什么”文章吧。什么是...
    99+
    2023-07-05
  • C++类的定义与实现方法是什么
    这篇文章主要讲解了“C++类的定义与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++类的定义与实现方法是什么”吧!一、类的定义根据C++ Primer中的描述,类的定义是一...
    99+
    2023-06-22
  • C++哈夫曼树的概念是什么与怎么实现
    这篇文章主要介绍“C++哈夫曼树的概念是什么与怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C++哈夫曼树的概念是什么与怎么实现”文章能帮助大家解决问题。一、 基本概念结点的权: 有某种现实...
    99+
    2023-06-30
  • Java实现二叉树的遍历方法是什么
    本篇内容主要讲解“Java实现二叉树的遍历方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Java实现二叉树的遍历方法是什么”吧!遍历二叉树遍历或称周游,traversal。系统地访问数...
    99+
    2023-06-19
  • C++中线程的原理与实现方法是什么
    这篇文章主要介绍“C++中线程的原理与实现方法是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C++中线程的原理与实现方法是什么”文章能帮助大家解决问题。在C++中有多种实现线程的方式C++11...
    99+
    2023-07-05
  • C#实现匿名的方法是什么
    本篇内容介绍了“C#实现匿名的方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!C#匿名方法允许我们定义委托对象可以接受的代码块。这个...
    99+
    2023-06-17
  • c++线程池实现的方法是什么
    C++线程池的实现方法可以使用C++中的多线程库,如std::thread和std::mutex等来实现。以下是一个简单的C++线程...
    99+
    2023-10-26
    c++
  • JAVA递归生成树形菜单的实现方法是什么
    今天小编给大家分享一下JAVA递归生成树形菜单的实现方法是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。  递归生成一个...
    99+
    2023-06-26
  • C++实现单例模式的方法是什么
    这篇文章将为大家详细讲解有关C++实现单例模式的方法是什么,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。饿汉模式类实例化就会占用内存,浪费资源,效率高,不存在线程安全问题。class&nbs...
    99+
    2023-06-22
  • C/C++ Qt数据库与TableView实现多组件联动的方法是什么
    这篇文章主要讲解了“C/C++ Qt数据库与TableView实现多组件联动的方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C/C++ Qt数据库与TableV...
    99+
    2023-06-21
  • C语言二叉树的遍历方法怎么实现
    这篇文章主要介绍“C语言二叉树的遍历方法怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C语言二叉树的遍历方法怎么实现”文章能帮助大家解决问题。     在本算法...
    99+
    2023-06-26
  • SpringMVC MethodArgumentResolver的作用与实现方法是什么
    这篇文章主要介绍“SpringMVC MethodArgumentResolver的作用与实现方法是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“SpringMVC Meth...
    99+
    2023-07-06
  • C#中重写属性的方法是什么
    在C#中重写属性的方法是使用override关键字来重写基类中的属性。例如: class BaseClass { publi...
    99+
    2024-03-07
    C#
  • C语言静态与动态通讯录的实现方法是什么
    这篇文章主要讲解了“C语言静态与动态通讯录的实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C语言静态与动态通讯录的实现方法是什么”吧!静态通讯录在我们学习完C语言的结构体、指针...
    99+
    2023-06-25
  • C/C++ 原生API实现线程池的方法是什么
    本篇内容主要讲解“C/C++ 原生API实现线程池的方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C/C++ 原生API实现线程池的方法是什么”吧!线程池有两个核心的概念,一个是任务队...
    99+
    2023-06-25
  • c++多进程通信实现的方法是什么
    C++多进程通信可以通过以下几种方法实现: 管道(Pipe):在父进程中创建管道,然后通过fork()系统调用创建子进程,父子进...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作