返回顶部
首页 > 资讯 > 精选 >OpenMP task construct实现原理源码分析
  • 156
分享到

OpenMP task construct实现原理源码分析

2023-07-05 09:07:25 156人浏览 安东尼
摘要

本篇内容主要讲解“OpenMP task construct实现原理源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“OpenMP task cons

本篇内容主要讲解“OpenMP task construct实现原理源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“OpenMP task construct实现原理源码分析”吧!

从编译器角度看 task construct

在本小节当中主要给大家分析一下编译器将 openmp 的 task construct 编译成什么样子,下面是一个 OpenMP 的 task 程序例子:

#include <stdio.h>#include <omp.h>int main(){#pragma omp parallel num_threads(4) default(none)  {#pragma omp task default(none)    {       printf("Hello World from tid = %d\n", omp_get_thread_num());    }  }  return 0;}

首先先捋一下整个程序被编译之后的执行流程,经过前面的文章的学习,我们已经知道了并行域当中的代码会被编译器编译成一个函数,关于这一点我们已经在前面的很多文章当中已经讨论过了,就不再进行复述。事实上 task construct 和 parallel construct 一样,task construct 也会被编译成一个函数,同样的这个函数也会被作为一个参数传递给 OpenMP 内部,被传递的这个函数可能被立即执行,也可能在函数 GoMP_parallel_end 被调用后,在到达同步点之前执行被执行(线程在到达并行域的同步点之前需要保证所有的任务都被执行完成)。

整个过程大致如下图所示:

OpenMP task construct实现原理源码分析

上面的 OpenMP task 程序对应的反汇编程序如下所示:

00000000004008ad <main>:  4008ad:       55                      push   %rbp  4008ae:       48 89 e5                mov    %rsp,%rbp  4008b1:       ba 04 00 00 00          mov    $0x4,%edx  4008b6:       be 00 00 00 00          mov    $0x0,%esi  4008bb:       bf db 08 40 00          mov    $0x4008db,%edi  4008c0:       e8 8b fe ff ff          callq  400750 <GOMP_parallel_start@plt>  4008c5:       bf 00 00 00 00          mov    $0x0,%edi  4008ca:       e8 0c 00 00 00          callq  4008db <main._omp_fn.0>  4008cf:       e8 8c fe ff ff          callq  400760 <GOMP_parallel_end@plt>  4008d4:       b8 00 00 00 00          mov    $0x0,%eax  4008d9:       5d                      pop    %rbp  4008da:       c3                      retq00000000004008db <main._omp_fn.0>:  4008db:       55                      push   %rbp  4008dc:       48 89 e5                mov    %rsp,%rbp  4008df:       48 83 ec 10             sub    $0x10,%rsp  4008e3:       48 89 7d f8             mov    %rdi,-0x8(%rbp)  4008e7:       c7 04 24 00 00 00 00    movl   $0x0,(%rsp)# 参数 flags  4008ee:       41 b9 01 00 00 00       mov    $0x1,%r9d# 参数 if_clause  4008f4:       41 b8 01 00 00 00       mov    $0x1,%r8d# 参数 arg_align  4008fa:       b9 00 00 00 00          mov    $0x0,%ecx# 参数 arg_size  4008ff:       ba 00 00 00 00          mov    $0x0,%edx# 参数 cpyfn  400904:       be 00 00 00 00          mov    $0x0,%esi# 参数 data  400909:       bf 15 09 40 00          mov    $0x400915,%edi # 这里就是调用函数 main._omp_fn.1  40090e:       e8 9d fe ff ff          callq  4007b0 <GOMP_task@plt>  400913:       c9                      leaveq  400914:       c3                      retq0000000000400915 <main._omp_fn.1>:  400915:       55                      push   %rbp  400916:       48 89 e5                mov    %rsp,%rbp  400919:       48 83 ec 10             sub    $0x10,%rsp  40091d:       48 89 7d f8             mov    %rdi,-0x8(%rbp)  400921:       e8 4a fe ff ff          callq  400770 <omp_get_thread_num@plt>  400926:       89 c6                   mov    %eax,%esi  400928:       bf d0 09 40 00          mov    $0x4009d0,%edi  40092d:       b8 00 00 00 00          mov    $0x0,%eax  400932:       e8 49 fe ff ff          callq  400780 <printf@plt>  400937:       c9                      leaveq  400938:       c3                      retq  400939:       0f 1f 80 00 00 00 00    nopl   0x0(%rax)

从上面程序反汇编的结果我们可以知道,在主函数当中仍然和之前一样在并行域前后分别调用了 GOMP_parallel_start 和 GOMP_parallel_end,然后在两个函数之间调用并行域的代码 main._omp_fn.0 ,并行域当中的代码被编译成函数 main._omp_fn.0 ,从上面的汇编代码我们可以看到在函数 main._omp_fn.0 调用了函数 GOMP_task ,这个函数的函数声明如下所示:

voidGOMP_task (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *),   long arg_size, long arg_align, bool if_clause, unsigned flags);

在这里我们重要解释一下部分参数,首先我们需要了解的是在 x86 当中的函数调用规约:

寄存器含义
rdi第一个参数
rsi第二个参数
rdx第三个参数
rcx第四个参数
r8第五个参数
r9第六个参数

根据上面的寄存器和参数的对应关系,在上面的汇编代码当中已经标注了对应的参数。在这些参数当中最重要的一个参数就是第一个函数指针,对应的汇编语句为 mov $0x400915,%edi,可以看到的是传入的函数的地址为 0x400915,根据上面的汇编程序可以知道这个地址对应的函数就是 main._omp_fn.1,这其实就是 task 区域之间被编译之后的对应的函数,从上面的 main._omp_fn.1 汇编程序当中也可以看出来调用了函数 omp_get_thread_num,这和前面的 task 区域当中代码是相对应的。

现在我们来解释一下其他的几个参数:

  • fn,task 区域被编译之后的函数地址。

  • data,函数 fn 的参数。

  • cpyfn,参数拷贝函数,一般是 NULL,有时候需要 task 当中的数据不能是共享的,需要时私有的,这个时候可能就需要数据拷贝函数,如果有数据需要及进行拷贝而且这个参数还为 NULL 的话,那么在 OpenMP 内部就会使用 memcpy 进行内存拷贝。

  • arg_size,参数的大小。

  • arg_align,参数多少字节对齐。

  • if_clause,if 子句当中的比较结果,如果没有 if 字句的话就是 true 。

  • flags,用于表示 task construct 的特征或者属性,比如是否是最终任务。

我们现在使用另外一个例子,来看看参数传递的变化。

#include <stdio.h>#include <omp.h>int main(){#pragma omp parallel num_threads(4) default(none)  {     int data = omp_get_thread_num();#pragma omp task default(none) firstprivate(data) if(data > 100)    {       data = omp_get_thread_num();       printf("data = %d Hello World from tid = %d\n", data, omp_get_thread_num());    }  }  return 0;}

上面的程序被编译之后对应的汇编程序如下所示:

00000000004008ad <main>:  4008ad:       55                      push   %rbp  4008ae:       48 89 e5                mov    %rsp,%rbp  4008b1:       48 83 ec 10             sub    $0x10,%rsp  4008b5:       ba 04 00 00 00          mov    $0x4,%edx  4008ba:       be 00 00 00 00          mov    $0x0,%esi  4008bf:       bf df 08 40 00          mov    $0x4008df,%edi  4008c4:       e8 87 fe ff ff          callq  400750 <GOMP_parallel_start@plt>  4008c9:       bf 00 00 00 00          mov    $0x0,%edi  4008ce:       e8 0c 00 00 00          callq  4008df <main._omp_fn.0>  4008d3:       e8 88 fe ff ff          callq  400760 <GOMP_parallel_end@plt>  4008d8:       b8 00 00 00 00          mov    $0x0,%eax  4008dd:       c9                      leaveq  4008de:       c3                      retq00000000004008df <main._omp_fn.0>:  4008df:       55                      push   %rbp  4008e0:       48 89 e5                mov    %rsp,%rbp  4008e3:       48 83 ec 20             sub    $0x20,%rsp  4008e7:       48 89 7d e8             mov    %rdi,-0x18(%rbp)  4008eb:       e8 80 fe ff ff          callq  400770 <omp_get_thread_num@plt>  4008f0:       89 45 fc                mov    %eax,-0x4(%rbp)  4008f3:       83 7d fc 64             cmpl   $0x64,-0x4(%rbp)  4008f7:       0f 9f c2                setg   %dl  4008fa:       8b 45 fc                mov    -0x4(%rbp),%eax  4008fd:       89 45 f0                mov    %eax,-0x10(%rbp)  400900:       48 8d 45 f0             lea    -0x10(%rbp),%rax  400904:       c7 04 24 00 00 00 00    movl   $0x0,(%rsp)# 参数 flags  40090b:       41 89 d1                mov    %edx,%r9d# 参数 if_clause  40090e:       41 b8 04 00 00 00       mov    $0x4,%r8d# 参数 arg_align  400914:       b9 04 00 00 00          mov    $0x4,%ecx# 参数 arg_size  400919:       ba 00 00 00 00          mov    $0x0,%edx# 参数 cpyfn  40091e:       48 89 c6                mov    %rax,%rsi# 参数 data  400921:       bf 2d 09 40 00          mov    $0x40092d,%edi# 这里就是调用函数 main._omp_fn.1  400926:       e8 85 fe ff ff          callq  4007b0 <GOMP_task@plt>  40092b:       c9                      leaveq  40092c:       c3                      retq000000000040092d <main._omp_fn.1>:  40092d:       55                      push   %rbp  40092e:       48 89 e5                mov    %rsp,%rbp  400931:       48 83 ec 20             sub    $0x20,%rsp  400935:       48 89 7d e8             mov    %rdi,-0x18(%rbp)  400939:       48 8b 45 e8             mov    -0x18(%rbp),%rax  40093D:       8b 00                   mov    (%rax),%eax  40093f:       89 45 fc                mov    %eax,-0x4(%rbp)  400942:       e8 29 fe ff ff          callq  400770 <omp_get_thread_num@plt>  400947:       89 c2                   mov    %eax,%edx  400949:       8b 45 fc                mov    -0x4(%rbp),%eax  40094c:       89 c6                   mov    %eax,%esi  40094e:       bf f0 09 40 00          mov    $0x4009f0,%edi  400953:       b8 00 00 00 00          mov    $0x0,%eax  400958:       e8 23 fe ff ff          callq  400780 <printf@plt>  40095d:       c9                      leaveq  40095e:       c3                      retq  40095f:       90                      nop

在上面的函数当中我们将 data 一个 4 字节的数据作为线程私有数据,可以看到给函数 GOMP_task 传递的参数参数的大小以及参数的内存对齐大小都发生来变化,从原来的 0 变成了 4,这因为 int 类型数据占 4 个字节。

Task Construct 源码分析

在本小节当中主要谈论在 OpenMP 内部是如何实现 task 的,关于这一部分内容设计的内容还是比较庞杂,首先需要了解的是在 OpenMP 当中使用 task construct 的被称作显示任务(explicit task),这种任务在 OpenMP 当中会有两个任务队列(双向循环队列),将所有的任务都保存在这样一张列表当中,整体结构如下图所示:

OpenMP task construct实现原理源码分析

在上图当中由同一个线程创建的任务为 child_task,他们之间使用 next_child 和 prev_child 两个指针进行连接,不同线程创建的任务之间可以使用 next_queue 和 prev_queue 两个指针进行连接。

任务的结构体描述如下所示:

struct gomp_task{  struct gomp_task *parent;// 任务的父亲任务  struct gomp_task *children;// 子任务  struct gomp_task *next_child;// 下一个子任务  struct gomp_task *prev_child;// 上一个子任务  struct gomp_task *next_queue;// 下一个任务 (不一定是同一个线程创建的子任务)  struct gomp_task *prev_queue;// 上一个任务 (不一定是同一个线程创建的子任务)  struct gomp_task_icv icv; // openmp 当中内部全局设置使用变量的值(internal control variable)  void (*fn) (void *);// task construct 被编译之后的函数  void *fn_data;// 函数参数  enum gomp_task_kind kind; // 任务类型 具体类型如下面的枚举类型  bool in_taskwait;// 是否处于 taskwait 状态  bool in_tied_task; // 是不是在绑定任务当中  bool final_task; // 是不是最终任务  gomp_sem_t taskwait_sem; // 对象 用于保证线程操作这个数据的时候的线程安全};// openmp 当中的任务的状态enum gomp_task_kind{  GOMP_TASK_IMPLICIT,  GOMP_TASK_IFFALSE,  GOMP_TASK_WAITING,  GOMP_TASK_TIED};

在了解完上面的数据结构之后我们来看一下前面的给 OpenMP 内部提交任务的函数 GOMP_task,其源代码如下所示:

voidGOMP_task (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *),   long arg_size, long arg_align, bool if_clause, unsigned flags){  struct gomp_thread *thr = gomp_thread ();  // team 是 OpenMP 一个线程组当中共享的数据  struct gomp_team *team = thr->ts.team;#ifdef HAVE_BROKEN_POSIX_SEMAPHORES    if (cpyfn)    if_clause = false;  if (flags & 1)    flags &= ~1;#endif  // 这里表示如果是 if 子句的条件为真的时候或者是孤立任务(team == NULL )或者是最终任务的时候或者任务队列当中的任务已经很多的时候  // 提交的任务需要立即执行而不能够放入任务队列当中然后在 GOMP_parallel_end 函数当中进行任务的取出  // 再执行  if (!if_clause || team == NULL      || (thr->task && thr->task->final_task)      || team->task_count > 64 * team->nthreads)    {      struct gomp_task task;      gomp_init_task (&task, thr->task, gomp_icv (false));      task.kind = GOMP_TASK_IFFALSE;      task.final_task = (thr->task && thr->task->final_task) || (flags & 2);      if (thr->task)task.in_tied_task = thr->task->in_tied_task;      thr->task = &task;      if (__builtin_expect (cpyfn != NULL, 0)){        // 这里是进行数据的拷贝  char buf[arg_size + arg_align - 1];  char *arg = (char *) (((uintptr_t) buf + arg_align - 1)& ~(uintptr_t) (arg_align - 1));  cpyfn (arg, data);  fn (arg);}      else        // 如果不需要进行数据拷贝则直接执行这个函数fn (data);            if (task.children != NULL){  gomp_mutex_lock (&team->task_lock);  gomp_clear_parent (task.children);  gomp_mutex_unlock (&team->task_lock);}      gomp_end_task ();    }  else    {    // 下面就是将任务先提交到任务队列当中然后再取出执行      struct gomp_task *task;      struct gomp_task *parent = thr->task;      char *arg;      bool do_wake;      task = gomp_malloc (sizeof (*task) + arg_size + arg_align - 1);      arg = (char *) (((uintptr_t) (task + 1) + arg_align - 1)      & ~(uintptr_t) (arg_align - 1));      gomp_init_task (task, parent, gomp_icv (false));      task->kind = GOMP_TASK_IFFALSE;      task->in_tied_task = parent->in_tied_task;      thr->task = task;    // 这里就是参数拷贝逻辑 如果存在拷贝函数就通过拷贝函数进行参数赋值 否则使用 memcpy 进行    // 参数的拷贝      if (cpyfn)cpyfn (arg, data);      elsememcpy (arg, data, arg_size);      thr->task = parent;      task->kind = GOMP_TASK_WAITING;      task->fn = fn;      task->fn_data = arg;      task->in_tied_task = true;      task->final_task = (flags & 2) >> 1;    // 在这里获取全局队列锁 保证下面的代码在多线程条件下的线程安全    // 因为在下面的代码当中会对全局的队列进行修改操作 下面的操作就是队列的一些基本操作啦      gomp_mutex_lock (&team->task_lock);      if (parent->children){  task->next_child = parent->children;  task->prev_child = parent->children->prev_child;  task->next_child->prev_child = task;  task->prev_child->next_child = task;}      else{  task->next_child = task;  task->prev_child = task;}      parent->children = task;      if (team->task_queue){  task->next_queue = team->task_queue;  task->prev_queue = team->task_queue->prev_queue;  task->next_queue->prev_queue = task;  task->prev_queue->next_queue = task;}      else{  task->next_queue = task;  task->prev_queue = task;  team->task_queue = task;}      ++team->task_count;      gomp_team_barrier_set_task_pending (&team->barrier);      do_wake = team->task_running_count + !parent->in_tied_task< team->nthreads;      gomp_mutex_unlock (&team->task_lock);      if (do_wake)gomp_team_barrier_wake (&team->barrier, 1);    }}

对于上述所讨论的内容大家只需要了解相关的整体流程即可,细节除非你是 openmp 的开发人员,否则事实上没有多大用,大家只需要了解大致过程即可,帮助你进一步深入理解 OpenMP 内部的运行机制。

但是需要了解的是上面的整个过程还只是将任务提交到 OpenMP 内部的任务队列当中,还没有执行,我们在前面谈到过在线程执行完并行域的代码会执行函数 GOMP_parallel_end 在这个函数内部还会调用其他函数,最终会调用函数 gomp_barrier_handle_tasks 将内部的所有的任务执行完成。

voidgomp_barrier_handle_tasks (gomp_barrier_state_t state){  struct gomp_thread *thr = gomp_thread ();  struct gomp_team *team = thr->ts.team;  struct gomp_task *task = thr->task;  struct gomp_task *child_task = NULL;  struct gomp_task *to_free = NULL;  // 首先对全局的队列结构进行加锁操作  gomp_mutex_lock (&team->task_lock);  if (gomp_barrier_last_thread (state))    {      if (team->task_count == 0){  gomp_team_barrier_done (&team->barrier, state);  gomp_mutex_unlock (&team->task_lock);  gomp_team_barrier_wake (&team->barrier, 0);  return;}      gomp_team_barrier_set_waiting_for_tasks (&team->barrier);    }  while (1)    {      if (team->task_queue != NULL){  struct gomp_task *parent;// 从任务队列当中拿出一个任务  child_task = team->task_queue;  parent = child_task->parent;  if (parent && parent->children == child_task)    parent->children = child_task->next_child;  child_task->prev_queue->next_queue = child_task->next_queue;  child_task->next_queue->prev_queue = child_task->prev_queue;  if (child_task->next_queue != child_task)    team->task_queue = child_task->next_queue;  else    team->task_queue = NULL;  child_task->kind = GOMP_TASK_TIED;  team->task_running_count++;  if (team->task_count == team->task_running_count)    gomp_team_barrier_clear_task_pending (&team->barrier);}      gomp_mutex_unlock (&team->task_lock);      if (to_free) // 释放任务的内存空间 to_free 在后面会被赋值成 child_task{  gomp_finish_task (to_free);  free (to_free);  to_free = NULL;}      if (child_task) // 调用任务对应的函数{  thr->task = child_task;  child_task->fn (child_task->fn_data);  thr->task = task;}      elsereturn; // 退出 while 循环      gomp_mutex_lock (&team->task_lock);      if (child_task){  struct gomp_task *parent = child_task->parent;  if (parent)    {      child_task->prev_child->next_child = child_task->next_child;      child_task->next_child->prev_child = child_task->prev_child;      if (parent->children == child_task){  if (child_task->next_child != child_task)    parent->children = child_task->next_child;  else    {            __atomic_store_n (&parent->children, NULL,MEMMODEL_RELEASE);      if (parent->in_taskwait)gomp_sem_post (&parent->taskwait_sem);    }}    }  gomp_clear_parent (child_task->children);  to_free = child_task;  child_task = NULL;  team->task_running_count--;  if (--team->task_count == 0      && gomp_team_barrier_waiting_for_tasks (&team->barrier))    {      gomp_team_barrier_done (&team->barrier, state);      gomp_mutex_unlock (&team->task_lock);      gomp_team_barrier_wake (&team->barrier, 0);      gomp_mutex_lock (&team->task_lock);    }}    }}

到此,相信大家对“OpenMP task construct实现原理源码分析”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

--结束END--

本文标题: OpenMP task construct实现原理源码分析

本文链接: https://lsjlt.com/news/350811.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作