这篇文章主要介绍“PyTorch中torch.utils.data.DataLoader怎么使用”,在日常操作中,相信很多人在PyTorch中torch.utils.data.DataLoader怎么使用问题上存在疑惑,小编查阅了各式资料,
这篇文章主要介绍“PyTorch中torch.utils.data.DataLoader怎么使用”,在日常操作中,相信很多人在PyTorch中torch.utils.data.DataLoader怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PyTorch中torch.utils.data.DataLoader怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
作用:torch.utils.data.DataLoader 主要是对数据进行 batch 的划分。
数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
在训练模型时使用到此函数,用来 把训练数据分成多个小组 ,此函数 每次抛出一组数据 。直至把所有的数据都抛出。就是做一个数据的初始化。
好处:
使用DataLoader的好处是,可以快速的迭代数据。
用于生成迭代数据非常方便。
注意:
除此之外,特别要注意的是输入进函数的数据一定得是可迭代的。如果是自定的数据集的话可以在定义类中用def__len__、def__getitem__定义。
BATCH_SIZE 刚好整除数据量
""" 批训练,把数据变成一小批一小批数据进行训练。 DataLoader就是用来包装所使用的数据,每次抛出一批数据"""import torchimport torch.utils.data as DataBATCH_SIZE = 5 # 批训练的数据个数x = torch.linspace(1, 10, 10) # 训练数据print(x)y = torch.linspace(10, 1, 10) # 标签print(y)# 把数据放在数据库中torch_dataset = Data.TensorDataset(x, y) # 对给定的 tensor 数据,将他们包装成 datasetloader = Data.DataLoader( # 从数据库中每次抽出batch size个样本 dataset=torch_dataset, # torch TensorDataset fORMat batch_size=BATCH_SIZE, # mini batch size shuffle=True, # 要不要打乱数据 (打乱比较好) num_workers=2, # 多线程来读数据)def show_batch(): for epoch in range(3): for step, (batch_x, batch_y) in enumerate(loader): # training print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))show_batch()
输出结果:
tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
steop:0, batch_x:tensor([10., 1., 3., 7., 6.]), batch_y:tensor([ 1., 10., 8., 4., 5.])
steop:1, batch_x:tensor([8., 5., 4., 9., 2.]), batch_y:tensor([3., 6., 7., 2., 9.])
steop:0, batch_x:tensor([ 9., 3., 10., 1., 5.]), batch_y:tensor([ 2., 8., 1., 10., 6.])
steop:1, batch_x:tensor([2., 6., 8., 4., 7.]), batch_y:tensor([9., 5., 3., 7., 4.])
steop:0, batch_x:tensor([ 2., 10., 9., 6., 1.]), batch_y:tensor([ 9., 1., 2., 5., 10.])
steop:1, batch_x:tensor([8., 3., 4., 7., 5.]), batch_y:tensor([3., 8., 7., 4., 6.])
说明:共有 10 条数据,设置 BATCH_SIZE 为 5 来进行划分,能划分为 2 组(steop 为 0 和 1)。这两组数据互斥。
BATCH_SIZE 不整除数据量:会输出余下所有数据
将上述代码中的 BATCH_SIZE 改为 4 :
""" 批训练,把数据变成一小批一小批数据进行训练。 DataLoader就是用来包装所使用的数据,每次抛出一批数据"""import torchimport torch.utils.data as DataBATCH_SIZE = 4 # 批训练的数据个数x = torch.linspace(1, 10, 10) # 训练数据print(x)y = torch.linspace(10, 1, 10) # 标签print(y)# 把数据放在数据库中torch_dataset = Data.TensorDataset(x, y) # 对给定的 tensor 数据,将他们包装成 datasetloader = Data.DataLoader( # 从数据库中每次抽出batch size个样本 dataset=torch_dataset, # torch TensorDataset format batch_size=BATCH_SIZE, # mini batch size shuffle=True, # 要不要打乱数据 (打乱比较好) num_workers=2, # 多线程来读数据)def show_batch(): for epoch in range(3): for step, (batch_x, batch_y) in enumerate(loader): # training print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))show_batch()
输出结果:
tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
steop:0, batch_x:tensor([1., 5., 3., 2.]), batch_y:tensor([10., 6., 8., 9.])
steop:1, batch_x:tensor([7., 8., 4., 6.]), batch_y:tensor([4., 3., 7., 5.])
steop:2, batch_x:tensor([10., 9.]), batch_y:tensor([1., 2.])
steop:0, batch_x:tensor([ 7., 10., 5., 2.]), batch_y:tensor([4., 1., 6., 9.])
steop:1, batch_x:tensor([9., 1., 6., 4.]), batch_y:tensor([ 2., 10., 5., 7.])
steop:2, batch_x:tensor([8., 3.]), batch_y:tensor([3., 8.])
steop:0, batch_x:tensor([10., 3., 2., 8.]), batch_y:tensor([1., 8., 9., 3.])
steop:1, batch_x:tensor([1., 7., 5., 9.]), batch_y:tensor([10., 4., 6., 2.])
steop:2, batch_x:tensor([4., 6.]), batch_y:tensor([7., 5.])
说明:共有 10 条数据,设置 BATCH_SIZE 为 4 来进行划分,能划分为 3 组(steop 为 0 、1、2)。分别有 4、4、2 条数据。
到此,关于“PyTorch中torch.utils.data.DataLoader怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!
--结束END--
本文标题: PyTorch中torch.utils.data.DataLoader怎么使用
本文链接: https://lsjlt.com/news/341677.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0