返回顶部
首页 > 资讯 > 精选 >Netty分布式高性能工具类异线程下回收对象分析
  • 670
分享到

Netty分布式高性能工具类异线程下回收对象分析

2023-06-29 17:06:41 670人浏览 薄情痞子
摘要

这篇文章主要介绍“Netty分布式高性能工具类异线程下回收对象分析”,在日常操作中,相信很多人在Netty分布式高性能工具类异线程下回收对象分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Netty分布式高

这篇文章主要介绍“Netty分布式高性能工具类异线程下回收对象分析”,在日常操作中,相信很多人在Netty分布式高性能工具类异线程下回收对象分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Netty分布式高性能工具类异线程下回收对象分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

异线程回收对象

就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑

我们之前小节简单介绍过, 异线程回收对象, 是不会放在当前线程的stack中的, 而是放在一个WeakOrderQueue的数据结构中, 回顾我们之前的一个图:

Netty分布式高性能工具类异线程下回收对象分析

8-6-1

相关的逻辑, 我们跟到源码中:

首先从回收对象的入口方法开始, DefualtHandle的recycle方法:

public void recycle(Object object) {    if (object != value) {        throw new IllegalArgumentException("object does not belong to handle");    }    stack.push(this);}

这部分我们并不陌生, 跟到push方法中:

void push(DefaultHandle<?> item) {    Thread currentThread = Thread.currentThread();    if (thread == currentThread) {        pushNow(item);    } else {        pushLater(item, currentThread);    }}

上一小节分析过, 同线程会走到pushNow, 有关具体逻辑也进行了分析

如果不是同线程, 则会走到pushLater方法, 传入handle对象和当前线程对象

跟到pushLater方法中

private void pushLater(DefaultHandle<?> item, Thread thread) {    Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();    WeakOrderQueue queue = delayedRecycled.get(this);    if (queue == null) {        if (delayedRecycled.size() >= maxDelayedQueues) {            delayedRecycled.put(this, WeakOrderQueue.DUMMY);            return;        }        if ((queue = WeakOrderQueue.allocate(this, thread)) == null) {            return;        }        delayedRecycled.put(this, queue);    } else if (queue == WeakOrderQueue.DUMMY) {        return;    }    queue.add(item);}

首先通过DELAYED_RECYCLED.get()获取一个delayedRecycled对象

我们跟到DELAYED_RECYCLED中:

private static final FastThreadLocal<Map<Stack<?>, WeakOrderQueue>> DELAYED_RECYCLED =        new FastThreadLocal<Map<Stack<?>, WeakOrderQueue>>() {    @Override    protected Map<Stack<?>, WeakOrderQueue> initialValue() {        return new WeakHashMap<Stack<?>, WeakOrderQueue>();    }};

这里我们看到DELAYED_RECYCLED是一个FastThreadLocal对象, initialValue方法创建一个WeakHashMap对象, WeakHashMap是一个map, key为stack, value为我们刚才提到过的WeakOrderQueue

从中我们可以分析到, 每个线程都维护了一个WeakHashMap对象

WeakHashMap中的元素, 是一个stack和WeakOrderQueue的映射, 说明了不同的stack, 对应不同的WeakOrderQueue

这里的映射关系可以举个例子说明:

比如线程1创建了一个对象, 在线程3进行了回收, 线程2创建了一个对象, 同样也在线程3进行了回收, 那么线程3对应的WeakHashMap中就会有两个元素:

线程1的stack和线程2的WeakOrderQueue, 线程2和stack和线程2的WeakOrderQueue

我们回到pushLater方法中:

继续往下看:

WeakOrderQueue queue = delayedRecycled.get(this)

拿到了当前线程的WeakHashMap对象delayedRecycled之后, 然后通过delayedRecycled创建对象的线程的stack, 拿到WeakOrderQueue

这里的this, 就是创建对象的那个线程所属的stack, 这个stack是绑定在handle中的, 创建handle对象时候进行的绑定

假设当前线程是线程2, 创建handle的线程是线程1, 这里通过handle的stack拿到线程1的WeakOrderQueue

 if (queue == null) 说明线程2没有回收过线程1的对象, 则进入if块的逻辑:

首先看判断 if (delayedRecycled.size() >= maxDelayedQueues) 

 delayedRecycled.size() 表示当前线程回收其他创建对象的线程的线程个数, 也就是有几个其他的线程在当前线程回收对象

maxDelayedQueues表示最多能回收的线程个数, 这里如果朝超过这个值, 就表示当前线程不能在回收其他线程的对象了

通过 delayedRecycled.put(this, WeakOrderQueue.DUMMY) 标记, 创建对象的线程的stack, 所对应的WeakOrderQueue不可用, DUMMY我们可以理解为不可用

如果没有超过maxDelayedQueues, 则通过if判断中的 WeakOrderQueue.allocate(this, thread) 这种方式创建一个WeakOrderQueue

allocate传入this, 也就是创建对象的线程对应的stack, 假设是线程1, thread就是当前线程, 假设是线程2

跟到allocate方法中

static WeakOrderQueue allocate(Stack<?> stack, Thread thread) {    return reserveSpace(stack.availableSharedCapacity, LINK_CAPACITY)            ? new WeakOrderQueue(stack, thread) : null;}

reserveSpace(stack.availableSharedCapacity, LINK_CAPACITY)表示线程1的stack还能不能分配LINK_CAPACITY个元素, 如果可以, 则直接通过new的方式创建一个WeakOrderQueue对象

再跟到reserveSpace方法中:

private static boolean reserveSpace(AtomicInteger availableSharedCapacity, int space) {    assert space >= 0;    for (;;) {        int available = availableSharedCapacity.get();        if (available < space) {            return false;        }        if (availableSharedCapacity.compareAndSet(available, available - space)) {            return true;        }    }}

参数availableSharedCapacity表示线程1的stack允许外部线程给其缓存多少个对象, 之前我们分析过是16384, space默认是16

方法中通过一个cas操作, 将16384减去16, 表示stack可以给其他线程缓存的对象数为16384-16

而这16个元素, 将由线程2缓存

回到pushLater方法中

创建之后通过 delayedRecycled.put(this, queue) 将stack和WeakOrderQueue进行关联

最后通过queue.add(item), 将创建的WeakOrderQueue添加一个handle

讲解WeakOrderQueue之前, 我们首先了解下WeakOrderQueue的数据结构

WeakOrderQueue维护了多个link, link之间是通过链表进行连接, 每个link可以盛放16个handle,

我们刚才分析过, 在reserveSpace方法中将 stack.availableSharedCapacity-16 , 其实就表示了先分配16个空间放在link里, 下次回收的时候, 如果这16空间没有填满, 则可以继续往里盛放

如果16个空间都已填满, 则通过继续添加link的方式继续分配16个空间用于盛放handle

WeakOrderQueue和WeakOrderQueue之间也是通过链表进行关联

可以根据下图理解上述逻辑:

Netty分布式高性能工具类异线程下回收对象分析

8-6-2

根据以上思路, 我们跟到WeakOrderQueue的构造方法中:

private WeakOrderQueue(Stack<?> stack, Thread thread) {    head = tail = new Link();    owner = new WeakReference<Thread>(thread);    synchronized (stack) {        next = stack.head;        stack.head = this;    }    availableSharedCapacity = stack.availableSharedCapacity;}

这里有个head和tail, 都指向一个link对象, 这里我们可以分析到, 其实在WeakOrderQueue中维护了一个链表, head分别代表头结点和尾节点, 初始状态下, 头结点和尾节点都指向同一个节点

简单看下link的类的定义

private static final class Link extends AtomicInteger {    private final DefaultHandle&lt;?&gt;[] elements = new DefaultHandle[LINK_CAPACITY];    private int readIndex;    private Link next;}

每次创建一个Link, 都会创建一个DefaultHandle类型的数组用于盛放DefaultHandle对象, 默认大小是16个

readIndex是一个读指针, 我们之后小节会进行分析

next节点则指向下一个link

回到WeakOrderQueue的构造方法中:

owner是对向前线程进行一个包装, 代表了当前线程

接下来在一个同步块中, 将当前创建的WeakOrderQueue插入到stack指向的第一个WeakOrderQueue, 也就是stack的head属性, 指向我们创建的WeakOrderQueue, 如图所示

Netty分布式高性能工具类异线程下回收对象分析

8-6-3

如果线程2创建一个和stack关联的WeakOrderQueue, stack的head节点就就会指向线程2创建WeakOrderQueue

如果之后线程3也创建了一个和stack关联的WeakOrderQueue, stack的head节点就会指向新创建的线程3的WeakOrderQueue

然后线程3的WeakOrderQueue再指向线程2的WeakOrderQueue

也就是无论哪个线程创建一个和同一个stack关联的WeakOrderQueue的时候, 都插入到stack指向的WeakOrderQueue列表的头部

这样就可以将stack和其他线程释放对象的容器WeakOrderQueue进行绑定

回到pushLater方法中

private void pushLater(DefaultHandle<?> item, Thread thread) {    Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();    WeakOrderQueue queue = delayedRecycled.get(this);    if (queue == null) {        if (delayedRecycled.size() >= maxDelayedQueues) {            delayedRecycled.put(this, WeakOrderQueue.DUMMY);            return;        }        if ((queue = WeakOrderQueue.allocate(this, thread)) == null) {            return;        }        delayedRecycled.put(this, queue);    } else if (queue == WeakOrderQueue.DUMMY) {        return;    }    queue.add(item);}

根据之前分析的WeakOrderQueue的数据结构, 我们分析最后一步, 也就是WeakOrderQueue的add方法

我们跟进WeakOrderQueue的add方法:

void add(DefaultHandle<?> handle) {    handle.lastRecycledId = id;    Link tail = this.tail;    int writeIndex;    if ((writeIndex = tail.get()) == LINK_CAPACITY) {        if (!reserveSpace(availableSharedCapacity, LINK_CAPACITY)) {            return;        }        this.tail = tail = tail.next = new Link();        writeIndex = tail.get();    }    tail.elements[writeIndex] = handle;    handle.stack = null;    tail.lazySet(writeIndex + 1);}

首先, 看 handle.lastRecycledId = id 

lastRecycledId表示handle上次回收的id, 而id表示WeakOrderQueue的id, weakOrderQueue每次创建的时候, 会为自增一个唯一的id

 Link tail = this.tail 表示拿到当前WeakOrderQueue的中指向最后一个link的指针, 也就是尾指针

再看 if ((writeIndex = tail.get()) == LINK_CAPACITY) 

tail.get()表示获取当前link中已经填充元素的个数, 如果等于16, 说明元素已经填充满

然后通过eserveSpace方法判断当前WeakOrderQueue是否还能缓存stack的对象, eserveSpace方法我们刚才已经分析过, 会根据stack的属性availableSharedCapacity-16的方式判断还能否缓存stack的对象, 如果不能再缓存stack的对象, 则返回

如果还能继续缓存, 则在创建一个link, 并将尾节点指向新创建的link, 并且原来尾节点的next的节点指向新创建的link

然后拿到当前link的writeIndex, 也就是写指针, 如果是新创建的link中没有元素, writeIndex为0

之后将尾部的link的elements属性, 也就是一个DefaultHandle类型的数组, 通过数组下标的方式将第writeIndex个节点赋值为要回收的handle

然后将handle的stack属性设置为null, 表示当前handle不是通过stack进行回收的

最后将tail节点的元素个数进行+1, 表示下一次将从writeIndex+1的位置往里写

到此,关于“Netty分布式高性能工具类异线程下回收对象分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

--结束END--

本文标题: Netty分布式高性能工具类异线程下回收对象分析

本文链接: https://lsjlt.com/news/325964.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Netty分布式高性能工具类异线程下回收对象分析
    这篇文章主要介绍“Netty分布式高性能工具类异线程下回收对象分析”,在日常操作中,相信很多人在Netty分布式高性能工具类异线程下回收对象分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Netty分布式高...
    99+
    2023-06-29
  • Netty分布式高性能工具类异线程下回收对象解析
    目录异线程回收对象跟到pushLater方法中跟到allocate方法中回到pushLater方法中简单看下link的类的定义回到pushLater方法中前文传送门:Netty分布式...
    99+
    2024-04-02
  • Netty分布式高性能工具类同线程下回收对象解析
    目录同线程回收对象回顾第三小节的demo中的main方法我们跟进recycle方法然后获取当前size同线程回收对象 上一小节剖析了从recycler中获取一个对象, 这一小节分析在...
    99+
    2024-04-02
  • Netty分布式高性能工具类FastThreadLocal和Recycler分析
    目录概述第一节:FastThreadLocal的使用和创建首先我们看一个最简单的demo跟到nextVariableIndex方法中我们首先剖析slowGet()方法我们跟进fast...
    99+
    2024-04-02
  • Netty分布式高性能工具类recycler如何使用
    这篇文章主要介绍了Netty分布式高性能工具类recycler如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Netty分布式高性能工具类recycler如何使用文章都会有所收获,下面我们一起来看看吧。r...
    99+
    2023-06-29
  • Netty分布式从recycler对象回收站获取对象过程剖析
    前文传送门:Netty分布式高性能工具类recycler的使用及创建 从对象回收站中获取对象 我们回顾上一小节demo的main方法中 从回收站获取对象 public static ...
    99+
    2024-04-02
  • Netty分布式高性能工具类recycler的使用及创建
    目录recycler的使用这里看一个示例在Recycler的类的源码中, 我们看到这一段逻辑跟到Stack的构造方法中继续跟重载的构造方法我们再回到Stack的构造方法中前...
    99+
    2024-04-02
  • Netty分布式获取异线程释放对象源码剖析
    目录获取异线程释放对象在介绍之前我们首先看Stack类中的两个属性我们跟到pop方法中继续跟到scavengeSome方法中我们继续分析transfer方法接着我们我们关注一个细节我...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作