Python 官方文档:入门教程 => 点击学习
这篇文章主要介绍python基于keras训练如何实现微笑识别,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、数据预处理实验数据来自genki4k提取含有完整人脸的图片def init_file():&n
这篇文章主要介绍python基于keras训练如何实现微笑识别,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
实验数据来自genki4k
提取含有完整人脸的图片
def init_file(): num = 0 bar = tqdm(os.listdir(read_path)) for file_name in bar: bar.desc = "预处理图片: " # a图片的全路径 img_path = (read_path + "/" + file_name) # 读入的图片的路径中含非英文 img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # 获取图片的宽高 img_shape = img.shape img_height = img_shape[0] img_width = img_shape[1] # 用来存储生成的单张人脸的路径 # dlib检测 dets = detector(img, 1) for k, d in enumerate(dets): if len(dets) > 1: continue num += 1 # 计算矩形大小 # (x,y), (宽度width, 高度height) # pos_start = tuple([d.left(), d.top()]) # pos_end = tuple([d.right(), d.bottom()]) # 计算矩形框大小 height = d.bottom() - d.top() width = d.right() - d.left() # 根据人脸大小生成空的图像 img_blank = np.zeros((height, width, 3), np.uint8) for i in range(height): if d.top() + i >= img_height: # 防止越界 continue for j in range(width): if d.left() + j >= img_width: # 防止越界 continue img_blank[i][j] = img[d.top() + i][d.left() + j] img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC) # 保存图片 cv2.imencode('.jpg', img_blank)[1].tofile(save_path + "/" + "file" + str(num) + ".jpg") logging.info("一共", len(os.listdir(read_path)), "个样本") logging.info("有效样本", num)
# 创建网络def create_model(): model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc']) return model
# 训练模型def train_model(model): # 归一化处理 train_datagen = ImageDataGenerator( rescale=1. / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, ) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( # This is the target directory train_dir, # All images will be resized to 150x150 target_size=(150, 150), batch_size=32, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary') history = model.fit_generator( train_generator, steps_per_epoch=60, epochs=12, validation_data=validation_generator, validation_steps=30) # 保存模型 save_path = "../output/model" if not os.path.exists(save_path): os.makedirs(save_path) model.save(save_path + "/smileDetect.h6") return history
准确率
丢失率
训练过程
通过读取摄像头内容进行预测
def rec(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dets = detector(gray, 1) if dets is not None: for face in dets: left = face.left() top = face.top() right = face.right() bottom = face.bottom() cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 2) img1 = cv2.resize(img[top:bottom, left:right], dsize=(150, 150)) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img1 = np.array(img1) / 255. img_tensor = img1.reshape(-1, 150, 150, 3) prediction = model.predict(img_tensor) if prediction[0][0] > 0.5: result = 'unsmile' else: result = 'smile' cv2.putText(img, result, (left, top), font, 2, (0, 255, 0), 2, cv2.LINE_AA) cv2.imshow('Video', img)while video.isOpened(): res, img_rd = video.read() if not res: break rec(img_rd) if cv2.waiTKEy(1) & 0xFF == ord('q'): break
import dlib # 人脸识别的库dlibimport numpy as np # 数据处理的库numpyimport cv2 # 图像处理的库OpenCVimport osimport shutilfrom tqdm import tqdmimport logging# dlib预测器detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor('../resources/shape_predictor_68_face_landmarks.dat')# 原图片路径read_path = "../resources/genki4k/files"# 提取人脸存储路径save_path = "../output/genki4k/files"if not os.path.exists(save_path): os.makedirs(save_path)# 新的数据集data_dir = '../resources/data'if not os.path.exists(data_dir): os.makedirs(data_dir)# 训练集train_dir = data_dir + "/train"if not os.path.exists(train_dir): os.makedirs(train_dir)# 验证集validation_dir = os.path.join(data_dir, 'validation')if not os.path.exists(validation_dir): os.makedirs(validation_dir)# 测试集test_dir = os.path.join(data_dir, 'test')if not os.path.exists(test_dir): os.makedirs(test_dir)# 初始化训练数据def init_data(file_list): # 如果不存在文件夹则新建 for file_path in file_list: if not os.path.exists(file_path): os.makedirs(file_path) # 存在则清空里面所有数据 else: for i in os.listdir(file_path): path = os.path.join(file_path, i) if os.path.isfile(path): os.remove(path)def init_file(): num = 0 bar = tqdm(os.listdir(read_path)) for file_name in bar: bar.desc = "预处理图片: " # a图片的全路径 img_path = (read_path + "/" + file_name) # 读入的图片的路径中含非英文 img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # 获取图片的宽高 img_shape = img.shape img_height = img_shape[0] img_width = img_shape[1] # 用来存储生成的单张人脸的路径 # dlib检测 dets = detector(img, 1) for k, d in enumerate(dets): if len(dets) > 1: continue num += 1 # 计算矩形大小 # (x,y), (宽度width, 高度height) # pos_start = tuple([d.left(), d.top()]) # pos_end = tuple([d.right(), d.bottom()]) # 计算矩形框大小 height = d.bottom() - d.top() width = d.right() - d.left() # 根据人脸大小生成空的图像 img_blank = np.zeros((height, width, 3), np.uint8) for i in range(height): if d.top() + i >= img_height: # 防止越界 continue for j in range(width): if d.left() + j >= img_width: # 防止越界 continue img_blank[i][j] = img[d.top() + i][d.left() + j] img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC) # 保存图片 cv2.imencode('.jpg', img_blank)[1].tofile(save_path + "/" + "file" + str(num) + ".jpg") logging.info("一共", len(os.listdir(read_path)), "个样本") logging.info("有效样本", num)# 划分数据集def divide_data(file_path, message, begin, end): files = ['file{}.jpg'.fORMat(i) for i in range(begin, end)] bar = tqdm(files) bar.desc = message for file in bar: src = os.path.join(save_path, file) dst = os.path.join(file_path, file) shutil.copyfile(src, dst)if __name__ == "__main__": init_file() positive_train_dir = os.path.join(train_dir, 'smile') negative_train_dir = os.path.join(train_dir, 'unSmile') positive_validation_dir = os.path.join(validation_dir, 'smile') negative_validation_dir = os.path.join(validation_dir, 'unSmile') positive_test_dir = os.path.join(test_dir, 'smile') negative_test_dir = os.path.join(test_dir, 'unSmile') file_list = [positive_train_dir, positive_validation_dir, positive_test_dir, negative_train_dir, negative_validation_dir, negative_test_dir] init_data(file_list) divide_data(positive_train_dir, "划分训练集正样本", 1, 1001) divide_data(negative_train_dir, "划分训练集负样本", 2200, 3200) divide_data(positive_validation_dir, "划分验证集正样本", 1000, 1500) divide_data(negative_validation_dir, "划分验证集负样本", 3000, 3500) divide_data(positive_test_dir, "划分测试集正样本", 1500, 2000) divide_data(negative_test_dir, "划分测试集负样本", 2800, 3500)
import osfrom keras import layersfrom keras import modelsfrom Tensorflow import optimizersimport matplotlib.pyplot as pltfrom keras.preprocessing.image import ImageDataGeneratortrain_dir = "../resources/data/train"validation_dir = "../resources/data/validation"# 创建网络def create_model(): model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc']) return model# 训练模型def train_model(model): # 归一化处理 train_datagen = ImageDataGenerator( rescale=1. / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, ) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( # This is the target directory train_dir, # All images will be resized to 150x150 target_size=(150, 150), batch_size=32, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary') history = model.fit_generator( train_generator, steps_per_epoch=60, epochs=12, validation_data=validation_generator, validation_steps=30) # 保存模型 save_path = "../output/model" if not os.path.exists(save_path): os.makedirs(save_path) model.save(save_path + "/smileDetect.h6") return history# 展示训练结果def show_results(history): # 数据增强过后的训练集与验证集的精确度与损失度的图形 acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] # 绘制结果 epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show()if __name__ == "__main__": model = create_model() history = train_model(model) show_results(history)
import osfrom keras import layersfrom keras import modelsfrom tensorflow import optimizersimport matplotlib.pyplot as pltfrom keras.preprocessing.image import ImageDataGeneratortrain_dir = "../resources/data/train"validation_dir = "../resources/data/validation"# 创建网络# 检测视频或者摄像头中的人脸import cv2from keras.preprocessing import imagefrom keras.models import load_modelimport numpy as npimport dlibfrom PIL import Imagemodel = load_model('../output/model/smileDetect.h6')detector = dlib.get_frontal_face_detector()video = cv2.VideoCapture(0)font = cv2.FONT_HERSHEY_SIMPLEXdef rec(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dets = detector(gray, 1) if dets is not None: for face in dets: left = face.left() top = face.top() right = face.right() bottom = face.bottom() cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 2) img1 = cv2.resize(img[top:bottom, left:right], dsize=(150, 150)) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img1 = np.array(img1) / 255. img_tensor = img1.reshape(-1, 150, 150, 3) prediction = model.predict(img_tensor) if prediction[0][0] > 0.5: result = 'unsmile' else: result = 'smile' cv2.putText(img, result, (left, top), font, 2, (0, 255, 0), 2, cv2.LINE_AA) cv2.imshow('Video', img)while video.isOpened(): res, img_rd = video.read() if not res: break rec(img_rd) if cv2.waitKey(1) & 0xFF == ord('q'): breakvideo.release()cv2.destroyAllwindows()
以上是“Python基于keras训练如何实现微笑识别”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网Python频道!
--结束END--
本文标题: Python基于keras训练如何实现微笑识别
本文链接: https://lsjlt.com/news/321738.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0