这篇文章主要介绍“ARMv8汇编指令adrp和adr怎么使用”,在日常操作中,相信很多人在ARMv8汇编指令adrp和adr怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”ARMv8汇编指令adrp和a
这篇文章主要介绍“ARMv8汇编指令adrp和adr怎么使用”,在日常操作中,相信很多人在ARMv8汇编指令adrp和adr怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”ARMv8汇编指令adrp和adr怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
在阅读linux内核代码时,经常能碰到汇编代码,网上能查的资料千篇一律,大多都描述的很模糊。俗话说,实践是检验真理的唯一标准,我们就参考官方文档,自己写汇编代码并反汇编,探寻其中的奥妙。
在Linux内核启动代码primary_entry
中,使用adrp
指令获取Linux内核在内存中的起始页地址,页大小为4KB,由于内核启动的时候MMU还未打开,此时获取的Linux内核在内存中的起始页地址为物理地址。adrp
通过当前PC地址的偏移地址计算目标地址,和实际的物理无关,因此属于位置无关码。对于具体的计算过程,下面慢慢分析。
[arch/arm64/kernel/head.S]SYM_CODE_START(primary_entry) ......adrpx23, __PHYS_OFFSETandx23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 ......SYM_CODE_END(primary_entry)[arch/arm64/kernel/head.S]#define __PHYS_OFFSETKERNEL_START // 内核的物理地址[arch/arm64/include/asm/memory.h]// 内核的起始地址和结束地址在vmlinux.lds链接脚本中定义#define KERNEL_START _text // 内核代码段的起始地址,也即内核的起始地址#define KERNEL_END_end // 内核的结束地址
adrp
指令根据PC的偏移地址计算目标页地址。首先adrp
将一个21位有符号立即数左移12位,得到一个33位的有符号数(最高位为符号位),接着将PC地址的低12位清零,这样就得到了当前PC地址所在页的地址,然后将当前PC地址所在页的地址加上33位的有符号数,就得到了目标页地址,最后将目标页地址写入通用寄存器。此处页大小为4KB,只是为了得到更大的地址范围,和虚拟内存的页大小没有关系。通过adrp
指令,可以获取当前PC地址±4GB范围内的地址。通常的使用场景是先通过adrp
获取一个基地址,然后再通过基地址的偏移地址获取具体变量的地址。
下面是adrp
指令的编码格式。立即数占用21位,在运行的时候,会将21位立即数扩展为33位有符号数。最高位为1,表示这是一个aarch74指令。
Linux内核启动代码不好测试,需要写一个简单的测试代码。下面是本次adrp
的测试代码,使用adrp
指令获取g_val1
和g_val2
数组所在页的基地址,同时会打印数组的地址和调用函数的地址,由于是应用层的程序,这些地址都是虚拟地址,但是计算过程都是一样的。
#define PAGE_4KB (4096) #define __stringify_1(x...)#x#define __stringify(x...)__stringify_1(x)uint64_t g_val1[PAGE_4KB / sizeof(uint64_t)];uint64_t g_val2[PAGE_4KB / sizeof(uint64_t)];#define ADRP(label) ({ \ uint64_t __adrp_val__ = 0; \ asm volatile("adrp %0," __stringify(label) :"=r"(__adrp_val__)); \ __adrp_val__; \})static void adrp_test(){ printf("g_val1 addr 0x%lx, adrp_val1 0x%lx, adrp_test addr 0x%lx\n", (uint64_t)g_val1, ADRP(g_val1), (uint64_t)adrp_test); printf("g_val2 addr 0x%lx, adrp_val2 0x%lx, adrp_test addr 0x%lx\n", (uint64_t)g_val2, ADRP(g_val2), (uint64_t)adrp_test);}
上面程序运行的输出结果如下,g_val1
和g_val2
的地址分别为0x5583e25028
和0x5583e26028
,g_val1
的页基地址为0x5583e25000
,g_val2
页的基地址为0x5583e26000
,adrp_test
函数的地址为0x5583e1479c
。
g_val1 addr 0x5583e25028, adrp_val1 0x5583e25000, adrp_test addr 0x5583e1479cg_val2 addr 0x5583e26028, adrp_val2 0x5583e26000, adrp_test addr 0x5583e1479c
反汇编代码如下所示。下面分析一下g_val1
页基地址的计算过程,包括编译时和运行时,g_val2
页基地址的计算过程类似,这里不再赘述。
将g_val1
址低低12位清零,得到0x1100,将当前adrp
指令所在地址的低12清零,得到0x0(编译时完成)
0x1100减去0x0得到偏移地址0x11000,偏移地址右移12位得到偏移页数量0x11,将立即数0x11保存到指令编码中(编译时完成)
取出立即数0x11,左移12位转换成偏移的字节数,即0x11000(运行时完成)
将PC地址的低12位清零得到0x5583e14000(运行时完成)
将0x5583e14000加上0x1100得到g_val1
运行时页基地址0x5583e25000(运行时完成)
000000000000079c <adrp_test>: // 运行时的地址为0x5583e1479c...... 7b0:b0000080 adrpx0, 11000 <__data_start> // 获取g_val1页基地址...... 7e0:d0000080 adrpx0, 12000 <g_val1+0xfd8> // 获取g_val2页基地址Disassembly of section .data: // 数据段定义0000000000011000 <__data_start>: // 运行时的地址为0x5583e25000.........Disassembly of section .bss: // bss段定义0000000000011028 <g_val1>: // 运行时地址为0x5583e25028...0000000000012028 <g_val2>: // 运行时地址为0x5583e26028...
从上面可以看出,编译时和运行时的地址不一样,但通过adrp
指令都能正确获取g_val1
页基地址和g_val2
页基地址。说明adrp
获取的地址是位置无关的,不管运行时的地址怎么变,都可以正确获取对应变量页基地址。当然我们也可以使用专业的反汇编工具,直接将机器码转换为汇编代码。上面两条adrp
指令转换的汇编代码如下,和上面一样,这里的偏移地址都已经做了左移12位的处理。
adr
指令根据PC的偏移地址计算目标地址。偏移地址是一个21位的有符号数,加上当前的PC地址得到目标地址。adr
可以获取当前PC地址±1MB范围内的地址。下面是adr
指令的编码格式。立即数占用21位。
下面是测试代码,使用adr
指令获取变量g_val3
和g_val4
的地址,并与通过&
获取的地址进行对比。
uint64_t g_val3 = 0;uint64_t g_val4 = 0;#define ADR(label) ({ \ uint64_t __adr_val__ = 0; \ asm volatile("adr %0," __stringify(label) :"=r"(__adr_val__)); \ __adr_val__; \})static void adr_test(){ printf("g_val3 addr 0x%lx, adr_val1 0x%lx, adr_test addr 0x%lx\n", (uint64_t)&g_val3, ADR(g_val3), (uint64_t)adr_test); printf("g_val4 addr 0x%lx, adr_val2 0x%lx, adr_test addr 0x%lx\n", (uint64_t)&g_val4, ADR(g_val4), (uint64_t)adr_test);}
下面是测试结果,使用&
获取的地址和通过adr
获取的地址相同。
g_val3 addr 0x5583e25018, adr_val1 0x5583e25018, adr_test addr 0x5583e14810g_val4 addr 0x5583e25020, adr_val2 0x5583e25020, adr_test addr 0x5583e14810
下面是反汇编的代码。可以看出,adr
汇编代码中的偏移地址被objdump使用符号地址代替了,没有使用真正的偏移地址。g_val3
真正的偏移地址为0x107f4,g_val4
真正的偏移地址为0x107cc。执行第一条adr
指令的PC地址为0x5583e14824,则0x5583e14824+0x107f4=0x5583e25018为g_val3的地址。g_val4
的计算过程类似,不再赘述。
0000000000000810 <adr_test>: // 运行地址为0x5583e14810...... 824:10083fa0 adrx0, 11018 <g_val3> // 偏移地址为0x11018-0x824=0x107f4...... 854:10083e60 adrx0, 11020 <g_val4> // 偏移地址为0x11020-0x854=0x107cc......isassembly of section .data:0000000000011000 <__data_start>:.........Disassembly of section .bss:......0000000000011018 <g_val3>: // 运行地址为0x5583e25018...0000000000011020 <g_val4>: // 运行地址为0x5583e25020 ...
到此,关于“ARMv8汇编指令adrp和adr怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!
--结束END--
本文标题: ARMv8汇编指令adrp和adr怎么使用
本文链接: https://lsjlt.com/news/301963.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0