Python 官方文档:入门教程 => 点击学习
小编给大家分享一下python中A*算法有什么用,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!说明A*算法是静态路网中解决最短路径最有效的直接搜索方法。A*算法是启发式算法,采用最佳优先搜索策略(Best-first),基
小编给大家分享一下python中A*算法有什么用,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!
说明
A*算法是静态路网中解决最短路径最有效的直接搜索方法。
A*算法是启发式算法,采用最佳优先搜索策略(Best-first),基于评估函数对每个搜索位置的评估结果,猜测最佳优先搜索位置。
A*算法大大降低了低质量的搜索路径,因此搜索效率高,比传统的路径规划算法更实时、更灵活。但A*算法找到的是相对最优的路径,而不是绝对最短的路径,适合大规模、实时性高的问题。
实例
import heapqimport copyimport reimport datetime BLOCK = [] # 给定状态GoAL = [] # 目标状态 # 4个方向direction = [[0, 1], [0, -1], [1, 0], [-1, 0]] # OPEN表OPEN = [] # 节点的总数SUM_node_NUM = 0 # 状态节点class State(object): def __init__(self, gn=0, hn=0, state=None, hash_value=None, par=None): ''' 初始化 :param gn: gn是初始化到现在的距离 :param hn: 启发距离 :param state: 节点存储的状态 :param hash_value: 哈希值,用于判重 :param par: 父节点指针 ''' self.gn = gn self.hn = hn self.fn = self.gn + self.hn self.child = [] # 孩子节点 self.par = par # 父节点 self.state = state # 局面状态 self.hash_value = hash_value # 哈希值 def __lt__(self, other): # 用于堆的比较,返回距离最小的 return self.fn < other.fn def __eq__(self, other): # 相等的判断 return self.hash_value == other.hash_value def __ne__(self, other): # 不等的判断 return not self.__eq__(other) def manhattan_dis(cur_node, end_node): ''' 计算曼哈顿距离 :param cur_state: 当前状态 :return: 到目的状态的曼哈顿距离 ''' cur_state = cur_node.state end_state = end_node.state dist = 0 N = len(cur_state) for i in range(N): for j in range(N): if cur_state[i][j] == end_state[i][j]: continue num = cur_state[i][j] if num == 0: x = N - 1 y = N - 1 else: x = num / N # 理论横坐标 y = num - N * x - 1 # 理论的纵坐标 dist += (abs(x - i) + abs(y - j)) return dist def test_fn(cur_node, end_node): return 0 def generate_child(cur_node, end_node, hash_set, open_table, dis_fn): ''' 生成子节点函数 :param cur_node: 当前节点 :param end_node: 最终状态节点 :param hash_set: 哈希表,用于判重 :param open_table: OPEN表 :param dis_fn: 距离函数 :return: None ''' if cur_node == end_node: heapq.heappush(open_table, end_node) return num = len(cur_node.state) for i in range(0, num): for j in range(0, num): if cur_node.state[i][j] != 0: continue for d in direction: # 四个偏移方向 x = i + d[0] y = j + d[1] if x < 0 or x >= num or y < 0 or y >= num: # 越界了 continue # 记录扩展节点的个数 global SUM_NODE_NUM SUM_NODE_NUM += 1 state = copy.deepcopy(cur_node.state) # 复制父节点的状态 state[i][j], state[x][y] = state[x][y], state[i][j] # 交换位置 h = hash(str(state)) # 哈希时要先转换成字符串 if h in hash_set: # 重复了 continue hash_set.add(h) # 加入哈希表 gn = cur_node.gn + 1 # 已经走的距离函数 hn = dis_fn(cur_node, end_node) # 启发的距离函数 node = State(gn, hn, state, h, cur_node) # 新建节点 cur_node.child.append(node) # 加入到孩子队列 heapq.heappush(open_table, node) # 加入到堆中 def print_path(node): ''' 输出路径 :param node: 最终的节点 :return: None ''' num = node.gn def show_block(block): print("---------------") for b in block: print(b) stack = [] # 模拟栈 while node.par is not None: stack.append(node.state) node = node.par stack.append(node.state) while len(stack) != 0: t = stack.pop() show_block(t) return num def A_start(start, end, distance_fn, generate_child_fn, time_limit=10): ''' A*算法 :param start: 起始状态 :param end: 终止状态 :param distance_fn: 距离函数,可以使用自定义的 :param generate_child_fn: 产生孩子节点的函数 :param time_limit: 时间限制,默认10秒 :return: None ''' root = State(0, 0, start, hash(str(BLOCK)), None) # 根节点 end_state = State(0, 0, end, hash(str(GOAL)), None) # 最后的节点 if root == end_state: print("start == end !") OPEN.append(root) heapq.heapify(OPEN) node_hash_set = set() # 存储节点的哈希值 node_hash_set.add(root.hash_value) start_time = datetime.datetime.now() while len(OPEN) != 0: top = heapq.heappop(OPEN) if top == end_state: # 结束后直接输出路径 return print_path(top) # 产生孩子节点,孩子节点加入OPEN表 generate_child_fn(cur_node=top, end_node=end_state, hash_set=node_hash_set, open_table=OPEN, dis_fn=distance_fn) cur_time = datetime.datetime.now() # 超时处理 if (cur_time - start_time).seconds > time_limit: print("Time running out, break !") print("Number of nodes:", SUM_NODE_NUM) return -1 print("No road !") # 没有路径 return -1 def read_block(block, line, N): ''' 读取一行数据作为原始状态 :param block: 原始状态 :param line: 一行数据 :param N: 数据的总数 :return: None ''' pattern = re.compile(r'\d+') # 正则表达式提取数据 res = re.findall(pattern, line) t = 0 tmp = [] for i in res: t += 1 tmp.append(int(i)) if t == N: t = 0 block.append(tmp) tmp = [] if __name__ == '__main__': try: file = open("./infile.txt", "r") except IOError: print("can not open file infile.txt !") exit(1) f = open("./infile.txt") NUMBER = int(f.readline()[-2]) n = 1 for i in range(NUMBER): l = [] for j in range(NUMBER): l.append(n) n += 1 GOAL.append(l) GOAL[NUMBER - 1][NUMBER - 1] = 0 for line in f: # 读取每一行数据 OPEN = [] # 这里别忘了清空 BLOCK = [] read_block(BLOCK, line, NUMBER) SUM_NODE_NUM = 0 start_t = datetime.datetime.now() # 这里添加5秒超时处理,可以根据实际情况选择启发函数 length = A_start(BLOCK, GOAL, manhattan_dis, generate_child, time_limit=10) end_t = datetime.datetime.now() if length != -1: print("length =", length) print("time = ", (end_t - start_t).total_seconds(), "s") print("Nodes =", SUM_NODE_NUM)
看完了这篇文章,相信你对“Python中A*算法有什么用”有了一定的了解,如果想了解更多相关知识,欢迎关注编程网Python频道,感谢各位的阅读!
--结束END--
本文标题: python中A*算法有什么用
本文链接: https://lsjlt.com/news/299990.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0