本篇文章为大家展示了spark Structured Streaming的特性是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。下面介绍了Structured Streaming的基本概念,及其在
本篇文章为大家展示了spark Structured Streaming的特性是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
下面介绍了Structured Streaming的基本概念,及其在存储、自动流化、容错、性能等方面的特性,在事件时间的处理机制,最后带来了一些实际应用场景。
首先,TD对流处理所面对的问题和概念做了清晰的讲解。TD提到,因为流处理具有如下显著的复杂性特征,所以很难建立非常健壮的处理过程:
一是数据有各种不同格式(Jason、Avro、二进制)、脏数据、不及时且无序;
二是复杂的加载过程,基于事件时间的过程需要支持交互查询,和机器学习组合使用;
因为可以运行在Spark SQL引擎上,Spark Structured Streaming天然拥有较好的性能、良好的扩展性及容错性等Spark优势。除此之外,它还具备丰富、统一、高层次的api,因此便于处理复杂的数据和工作流。再加上,无论是Spark自身,还是其集成的多个存储系统,都有丰富的生态圈。这些优势也让Spark Structured Streaming得到更多的发展和使用。
流的定义是一种无限表(unbounded table),把数据流中的新数据追加在这张无限表中,而它的查询过程可以拆解为几个步骤,例如可以从kafka读取JSON数据,解析jsON数据,存入结构化Parquet表中,并确保端到端的容错机制。其中的特性包括:
支持多种消息队列,比如Files/Kafka/Kinesis等。
可以用join(), uNIOn()连接多个不同类型的数据源。
返回一个DataFrame,它具有一个无限表的结构。
你可以按需选择SQL(BI分析)、DataFrame(数据科学家分析)、DataSet(数据引擎),它们有几乎一样的语义和性能。
把Kafka的JSON结构的记录转换成String,生成嵌套列,利用了很多优化过的处理函数来完成这个动作,例如from_json(),也允许各种自定义函数协助处理,例如Lambdas, flatMap。
在Sink步骤中可以写入外部存储系统,例如Parquet。在Kafka sink中,支持foreach来对输出数据做任何处理,支持事务和exactly-once方式。
支持固定时间间隔的微批次处理,具备微批次处理的高性能性,支持低延迟的连续处理(Spark 2.3),支持检查点机制(check point)。
秒级处理来自Kafka的结构化源数据,可以充分为查询做好准备。
Spark SQL把批次查询转化为一系列增量执行计划,从而可以分批次地操作数据。
在容错机制上,Structured Streaming采取检查点机制,把进度offset写入stable的存储中,用JSON的方式保存支持向下兼容,允许从任何错误点(例如自动增加一个过滤来处理中断的数据)进行恢复。这样确保了端到端数据的exactly-once。
在性能上,Structured Streaming重用了Spark SQL优化器和Tungsten引擎,而且成本降低了3倍!!更多的信息可以参考作者的blog。
Structured Streaming隔离处理逻辑采用的是可配置化的方式(比如定制JSON的输入数据格式),执行方式是批处理还是流查询很容易识别。同时TD还比较了批处理、微批次-流处理、持续流处理三种模式的延迟性、吞吐性和资源分配情况。
在时间窗口的支持上,Structured Streaming支持基于事件时间(event-time)的聚合,这样更容易了解每隔一段时间发生的事情。同时也支持各种用户定义聚合函数(User Defined Aggregate Function,UDAF)。另外,Structured Streaming可通过不同触发器间分布式存储的状态来进行聚合,状态被存储在内存中,归档采用hdfs的Write Ahead Log (WAL)机制。当然,Structured Streaming还可自动处理过时的数据,更新旧的保存状态。因为历史状态记录可能无限增长,这会带来一些性能问题,为了限制状态记录的大小,Spark使用水印(watermarking)来删除不再更新的旧的聚合数据。允许支持自定义状态函数,比如事件或处理时间的超时,同时支持Scala和Java。
TD在演讲中也具体举例了流处理的应用情况。在苹果的信息安全平台中,每秒将产生有百万级事件,Structured Streaming可以用来做缺陷检测,下图是该平台架构:
在该架构中,一是可以把任意原始日志通过ETL加载到结构化日志库中,通过批次控制可很快进行灾难恢复;二是可以连接很多其它的数据信息(DHCP session,缓慢变化的数据);三是提供了多种混合工作方式:实时警告、历史报告、ad-hoc分析、统一的API允许支持各种分析(例如实时报警系统)等,支持快速部署。四是达到了百万事件秒级处理性能。
上述内容就是Spark Structured Streaming的特性是什么,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网精选频道。
--结束END--
本文标题: Spark Structured Streaming的特性是什么
本文链接: https://lsjlt.com/news/296145.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0