本篇内容介绍了“hadoop3.3集群搭建方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!分布式服务器集群上存储海量数据并运行分布式分析应
本篇内容介绍了“hadoop3.3集群搭建方法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
概念
HDFS 是一个分布式文件系统:引入存放文件元数据信息的服务器namenode和实际存放数据的服务器Datanode,对数据进行分布式储存和读取。
MapReduce 是一个计算框架:MapReduce的核心思想是把计算任务分配给集群内的服务器里执行。通过对计算任务的拆分(Map计算/Reduce计算)再根据任务调度器(JobTracker)对任务进行分布式计算。
服务 fsimage:元数据镜像文件(文件系统的目录树。) edits:元数据的操作日志(针对文件系统做的修改操作记录) NameNode 处理客户端的读写请求;配置副本策略;保存HDFS的元数据信息,比如命名空间信息,块信息等。当它运行的时候,这些信息是存在内存(保存的fsimage+edits)中的。但是这些信息也可以持久化到磁盘上 SecondaryNameNode 是专门做NameNode 中edits 文件向fsimage 合并数据,然后再发给namenode,防止edits过大的一种解决方案 NodeManager管理一个YARN集群中的每一个节点。比如监视资源使用情况( CPU,内存,硬盘,网络),跟踪节点健康等。 ResourceManager是Yarn集群主控节点,负责协调和管理整个集群(所有NodeManager)的资源 DataNode:负责存储client发来的数据块block;执行数据块的读写操作。 热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。 冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
集群
环境:
本文使用的3.3新版本搭建集群(一主两从)
192.168.41.128 server1192.168.41.129 server2192.168.41.130 server3
#禁用selinux/etc/selinux/config #配置免密登录 ssh-keygen ssh-copy-id -i .ssh/id_rsa.pub root@server2 ssh-copy-id -i .ssh/id_rsa.pub root@server3
安装jdk 略..
下载解压: tar zxvf hadoop-3.3.0.tar.gz
配置 详细查阅:Http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
#Administrators should use the etc/hadoop/hadoop-env.sh and optionally the etc/hadoop/mapred-env.sh and etc/hadoop/yarn-env.sh scripts to do site-specific customization of the Hadoop daemons’ process environment.官网原话,意思要指定JAVA_HOMEexport JAVA_HOME=/usr/java/jdk1.8.0_241-amd64#etc/hadoop/core-site.xml <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://server1:9000</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/hadoop-3.3.0/tmp</value> </property> #etc/hadoop/hdfs-site.xml,指定数据的副本数,小于等于从节点数 <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>server1:50090</value> </property>#etc/hadoop/yarn-site.xml,yarn配置资源管理器,提供统一的资源管理和调度<property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>server1</value> </property>#etc/hadoop/mapred-site.xml,mapreduce的执行引擎<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property></configuration>
初始化hdfs: bin/hdfs namenode -fORMat
修改执行角色
#sbin/start-dfs.sh,sbin/stop-dfs.shHDFS_DATANODE_USER=rootHDFS_DATANODE_SECURE_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root#sbin/start-yarn.sh,sbin/stop-yarn.shYARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root
配置从节点 etc/hadoop/works,修改对应主机
启动 sbin/start-all.sh
访问 http://192.168.41.128:9870/ 即主机+端口可以访问显示如下说明成功了
“hadoop3.3集群搭建方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!
--结束END--
本文标题: hadoop3.3集群搭建方法
本文链接: https://lsjlt.com/news/295938.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0