返回顶部
首页 > 资讯 > 后端开发 > Python >如何分析Python正则表达式re模块
  • 872
分享到

如何分析Python正则表达式re模块

2023-06-17 04:06:26 872人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

本篇文章为大家展示了如何分析python正则表达式re模块,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。简介正则表达式(regular expression)是可以匹配文本片段的模式。最简单的正则表

本篇文章为大家展示了如何分析python正则表达式re模块,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

简介

正则表达式(regular expression)是可以匹配文本片段的模式。最简单的正则表达式就是普通字符串,可以匹配其自身。比如,正则表达式可以匹配字符串。

要注意的是,正则表达式并不是一个程序,而是用于处理字符串的一种模式,如果你想用它来处理字符串,就必须使用支持正则表达式的工具,比如 linux 中的 awk, sed, grep,或者编程语言 Perl, Python, Java 等等。

正则表达式有多种不同的风格,下表列出了适用于 Python 或 Perl 等编程语言的部分元字符以及说明:

如何分析Python正则表达式re模块

re 模块

在 Python 中,我们可以使用内置的 re 模块来使用正则表达式。

有一点需要特别注意的是,正则表达式使用 \ 对特殊字符进行转义,比如,为了匹配字符串 ‘python.org’,我们需要使用正则表达式 'python\.org',而 Python 的字符串本身也用 \ 转义,所以上面的正则表达式在 Python 中应该写成 'python\\.org',这会很容易陷入 \ 的困扰中,因此,我们建议使用 Python 的原始字符串,只需加一个 r 前缀,上面的正则表达式可以写成:

r'python\.org'

re 模块提供了不少有用的函数,用以匹配字符串,比如:

  • compile 函数

  • match 函数

  • search 函数

  • findall 函数

  • finditer 函数

  • split 函数

  • sub 函数

  • subn 函数

re 模块的一般使用步骤如下:

  • 使用 compile 函数将正则表达式的字符串形式编译为一个 Pattern 对象

  • 通过 Pattern 对象提供的一系列方法对文本进行匹配查找,获得匹配结果(一个 Match 对象)

  • ***使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作

compile 函数

compile 函数用于编译正则表达式,生成一个 Pattern 对象,它的一般使用形式如下:

re.compile(pattern[, flag])

其中,pattern 是一个字符串形式的正则表达式,flag 是一个可选参数,表示匹配模式,比如忽略大小写,多行模式等。

下面,让我们看看例子。

import re

# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')

在上面,我们已将一个正则表达式编译成 Pattern 对象,接下来,我们就可以利用 pattern 的一系列方法对文本进行匹配查找了。Pattern 对象的一些常用方法主要有:

  • match 方法

  • search 方法

  • findall 方法

  • finditer 方法

  • split 方法

  • sub 方法

  • subn 方法

match 方法

match 方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果。它的一般使用形式如下:

match(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当你不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部

当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。

看看例子。

>>> import re
>>> pattern = re.compile(r'\d+')                    # 用于匹配至少一个数字
>>> m = pattern.match('one12twothree34four')        # 查找头部,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 2, 10) # 从'e'的位置开始匹配,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 3, 10) # 从'1'的位置开始匹配,正好匹配
>>> print m                                         # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>
>>> m.group(0)   # 可省略 0
'12'
>>> m.start(0)   # 可省略 0
3
>>> m.end(0)     # 可省略 0
5
>>> m.span(0)    # 可省略 0
(3, 5)

在上面,当匹配成功时返回一个 Match 对象,其中:

  • group([group1, &hellip;]) 方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用 group() 或 group(0)

  • start([group]) 方法用于获取分组匹配的子串在整个字符串中的起始位置(子串***个字符的索引),参数默认值为 0;

  • end([group]) 方法用于获取分组匹配的子串在整个字符串中的结束位置(子串***一个字符的索引+1),参数默认值为 0;

  • span([group]) 方法返回 (start(group), end(group))

再看看一个例子:

>>> import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I)   # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide WEB')
>>> print m                               # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>
>>> m.group(0)                            # 返回匹配成功的整个子串
'Hello World'
>>> m.span(0)                             # 返回匹配成功的整个子串的索引
(0, 11)
>>> m.group(1)                            # 返回***个分组匹配成功的子串
'Hello'
>>> m.span(1)                             # 返回***个分组匹配成功的子串的索引
(0, 5)
>>> m.group(2)                            # 返回第二个分组匹配成功的子串
'World'
>>> m.span(2)                             # 返回第二个分组匹配成功的子串
(6, 11)
>>> m.groups()                            # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')
>>> m.group(3)                            # 不存在第三个分组
Traceback (most recent call last):
  File "<stdin>", line 1, in <module> IndexError: no such group

search 方法

search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:

search(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。

当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。

让我们看看例子:

>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four')  # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30)  # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)

再来看一个例子:

# -*- coding: utf-8 -*-
import re

# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')

# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')

if m:
    # 使用 Match 获得分组信息
    print 'matching string:',m.group()
    print 'position:',m.span()

执行结果:

matching string: 123456
position: (6, 12)

findall 方法

上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。

findall 方法的使用形式如下:

findall(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。

findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。

看看例子:

import re

pattern = re.compile(r'\d+')   # 查找数字
result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)

print result1
print result2

执行结果:

['123456', '789']
['1', '2']

finditer 方法

finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。

看看例子:

# -*- coding: utf-8 -*-

import re

pattern = re.compile(r'\d+')

result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)

print type(result_iter1)
print type(result_iter2)

print 'result1...'
for m1 in result_iter1:   # m1 是 Match 对象
    print 'matching string: {}, position: {}'.fORMat(m1.group(), m1.span())

print 'result2...'
for m2 in result_iter2:
    print 'matching string: {}, position: {}'.format(m2.group(), m2.span())

执行结果:

<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)

split 方法

split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:

split(string[, maxsplit])

其中,maxsplit 用于指定***分割次数,不指定将全部分割。

看看例子:

import re

p = re.compile(r'[\s\,\;]+')
print p.split('a,b;; c   d')

执行结果:

['a', 'b', 'c', 'd']

sub 方法

sub 方法用于替换。它的使用形式如下:

sub(repl, string[, count])

其中,repl 可以是字符串也可以是一个函数:

  • 如果 repl 是字符串,则会使用 repl 去替换字符串每一个匹配的子串,并返回替换后的字符串,另外,repl 还可以使用 \id 的形式来引用分组,但不能使用编号 0;

  • 如果 repl 是函数,这个方法应当只接受一个参数(Match 对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。

count 用于指定最多替换次数,不指定时全部替换。

看看例子:

import re

p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'

def func(m):
    return 'hi' + ' ' + m.group(2)

print p.sub(r'hello world', s)  # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print p.sub(r'\2 \1', s)        # 引用分组
print p.sub(func, s)
print p.sub(func, s, 1)         # 最多替换一次

执行结果:

hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456

subn 方法

subn 方法跟 sub 方法的行为类似,也用于替换。它的使用形式如下:

subn(repl, string[, count])

它返回一个元组:

(sub(repl, string[, count]), 替换次数)

元组有两个元素,***个元素是使用 sub 方法的结果,第二个元素返回原字符串被替换的次数。

看看例子:

import re

p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'

def func(m):
    return 'hi' + ' ' + m.group(2)

print p.subn(r'hello world', s)
print p.subn(r'\2 \1', s)
print p.subn(func, s)
print p.subn(func, s, 1)

执行结果:

('hello world, hello world', 2)
('123 hello, 456 hello', 2)
('hi 123, hi 456', 2)
('hi 123, hello 456', 1)

其他函数

事实上,使用 compile 函数生成的 Pattern 对象的一系列方法跟 re 模块的多数函数是对应的,但在使用上有细微差别。

match 函数

match 函数的使用形式如下:

re.match(pattern, string[, flags]):

其中,pattern 是正则表达式的字符串形式,比如 \d+[a-z]+

而 Pattern 对象的 match 方法使用形式是:

match(string[, pos[, endpos]])

可以看到,match 函数不能指定字符串的区间,它只能搜索头部,看看例子:

import re
m1 = re.match(r'\d+', 'One12twothree34four')
if m1:
    print 'matching string:',m1.group()
else:
    print 'm1 is:',m1

m2 = re.match(r'\d+', '12twothree34four')
if m2:
    print 'matching string:', m2.group()
else:
    print 'm2 is:',m2

执行结果:

m1 is: None
matching string: 12

search 函数

search 函数的使用形式如下:

re.search(pattern, string[, flags])

search 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 search 方法类似。

findall 函数

findall 函数的使用形式如下:

re.findall(pattern, string[, flags])

findall 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 findall 方法类似。

看看例子:

import re

print re.findall(r'\d+', 'hello 12345 789')

# 输出
['12345', '789']

finditer 函数

finditer 函数的使用方法跟 Pattern 的 finditer 方法类似,形式如下:

re.finditer(pattern, string[, flags])

split 函数

split 函数的使用形式如下:

re.split(pattern, string[, maxsplit])

sub 函数

sub 函数的使用形式如下:

re.sub(pattern, repl, string[, count])

subn 函数

subn 函数的使用形式如下:

re.subn(pattern, repl, string[, count])

到底用哪种方式

从上文可以看到,使用 re 模块有两种方式:

  • 使用 re.compile 函数生成一个 Pattern 对象,然后使用 Pattern 对象的一系列方法对文本进行匹配查找;

  • 直接使用 re.match, re.search 和 re.findall 等函数直接对文本匹配查找;

下面,我们用一个例子展示这两种方法。

先看第 1 种用法:

import re

# 将正则表达式先编译成 Pattern 对象
pattern = re.compile(r'\d+')

print pattern.match('123, 123')
print pattern.search('234, 234')
print pattern.findall('345, 345')

再看第 2 种用法:

import re

print re.match(r'\d+', '123, 123')
print re.search(r'\d+', '234, 234')
print re.findall(r'\d+', '345, 345')

如果一个正则表达式需要用到多次(比如上面的 \d+),在多种场合经常需要被用到,出于效率的考虑,我们应该预先编译该正则表达式,生成一个  Pattern 对象,再使用该对象的一系列方法对需要匹配的文件进行匹配;而如果直接使用 re.match, re.search  等函数,每次传入一个正则表达式,它都会被编译一次,效率就会大打折扣。

因此,我们推荐使用第 1 种用法。

匹配中文

在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [\u4e00-\u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。

假设现在想把字符串 title = u'你好,hello,世界' 中的中文提取出来,可以这么做:

# -*- coding: utf-8 -*-

import re

title = u'你好,hello,世界'
pattern = re.compile(ur'[\u4e00-\u9fa5]+')
result = pattern.findall(title)

print result

注意到,我们在正则表达式前面加上了两个前缀 ur,其中 r 表示使用原始字符串,u 表示是 unicode 字符串。

执行结果:

[u'\u4f60\u597d', u'\u4e16\u754c']

贪婪匹配

在 Python 中,正则匹配默认是贪婪匹配(在少数语言中可能是非贪婪),也就是匹配尽可能多的字符

比如,我们想找出字符串中的所有 div 块:

import re

content = 'aa<div>test1</div>bb<div>test2</div>cc'
pattern = re.compile(r'<div>.*</div>')
result = pattern.findall(content)

print result

执行结果:

['<div>test1</div>bb<div>test2</div>']

由于正则匹配是贪婪匹配,也就是尽可能多的匹配,因此,在成功匹配到***个 </div> 时,它还会向右尝试匹配,查看是否还有更长的可以成功匹配的子串。

如果我们想非贪婪匹配,可以加一个 ?,如下:

import re

content = 'aa<div>test1</div>bb<div>test2</div>cc'
pattern = re.compile(r'<div>.*?</div>')    # 加上 ?
result = pattern.findall(content)

print result

结果:

['<div>test1</div>', '<div>test2</div>']

小结

re 模块的一般使用步骤如下:

  • 使用 compile 函数将正则表达式的字符串形式编译为一个 Pattern 对象;

  • 通过 Pattern 对象提供的一系列方法对文本进行匹配查找,获得匹配结果(一个 Match 对象);

  • 使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作;

Python 的正则匹配默认是贪婪匹配。

上述内容就是如何分析Python正则表达式re模块,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网Python频道。

--结束END--

本文标题: 如何分析Python正则表达式re模块

本文链接: https://lsjlt.com/news/287123.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 如何分析Python正则表达式re模块
    本篇文章为大家展示了如何分析Python正则表达式re模块,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。简介正则表达式(regular expression)是可以匹配文本片段的模式。最简单的正则表...
    99+
    2023-06-17
  • python re模块 正则表达式
    导航: 1、正则表达式元字符2、预定义字符集3、re模块常用函数4、注意事项 正则表达式在很多语言里都支持,python也不例外,re模块就是正则表达式的应用 正则表达式对字符串的逻辑操作,主要是对字符串的一种过滤,用“元字符” 与“普通...
    99+
    2023-01-30
    模块 正则表达式 python
  • python正则表达式模块re
    正则表达式的特殊元素 匹配符号 描述 '.'(点dot) 在默认模式下,它匹配除换行符之外的任何字符。如果指定了DOTALL标志,则匹配包括换行符在内的任何字符 '^'(Caret) 匹配以字符串开头,...
    99+
    2023-01-30
    模块 正则表达式 python
  • python--模块之re正则表达式
    简介: 正则表达式本身是一个小型的、高度专业化的编程语言,而在python中,通过内嵌集成re模块,我们可以通过直接调用来实现正则匹配。 正则表达式基础知识: --普通字符匹配自身 abc ----abc --元字符 . :匹...
    99+
    2023-01-30
    模块 正则表达式 python
  • python模块之re(正则表达式)
    匹配模式 re.ASCII同re.A,对应的内联标识为(a),用于向后兼容。使元字符\w, \W, \b, \B, \d, \D, \s和\S仅匹配ASCII字符。该模式只在string模式下有意义,在byte模式下将被忽略。 re.DE...
    99+
    2023-01-31
    模块 正则表达式 python
  • 详细解析python正则表达式re模块
    本篇文章给大家带来了关于python的相关知识,其中主要介绍了关于正则表达式中re模块的相关问题,下面一起来看一下,希望对大家有帮助。在Python中需要通过正则表达式对字符串进⾏匹配的时候,可以使⽤⼀个python自带的模块,名字为re。...
    99+
    2022-06-14
    python
  • python3--re模块:正则表达式
    怎么判断一个手机号码是否符合规范?根据手机号码一共11位并且只以13,14,15,18开头的数字这些特点,写了一段代码如下:while True:     phone_number ...
    99+
    2023-01-30
    模块 正则表达式
  • Python中的re正则表达式模块
    一、re模块的基本使用 Python里数量词默认是贪婪的,总是尝试匹配尽可能多的字符。正则表达式是用来匹配处理字符串的。 假如你需要匹配文本中的字符\,Python里的使用原生字符串...
    99+
    2024-04-02
  • 关于Python正则表达式模块之re模块
    目录前言:导入模块1.re.match() 函数(1)匹配单个字符(2)匹配多个字符 字符功能/说明位置*(3) 匹配开头和结尾2.re.search() 函数3.re.findal...
    99+
    2023-05-16
    Python正则表达式 Pythonre模块
  • python模块之re正则表达式详解
    一、简单介绍 正则表达式是一种小型的、高度专业化的编程语言,并不是python中特有的,是许多编程语言中基础而又重要的一部分。在python中,主要通过re模块来实现。 正则表达式模式被编译成一系列的字节码...
    99+
    2022-06-04
    详解 模块 正则表达式
  • Python的re模块正则表达式操作
    这个模块提供了与 Perl 相似l的正则表达式匹配操作。Unicode字符串也同样适用。 正则表达式使用反斜杠" "来代表特殊形式或用作转义字符,这里跟Python的语法冲突,因此,Python用" \...
    99+
    2022-06-04
    模块 操作 正则表达式
  • python的正则表达式和re模块详解
    目录一、正则表达式基础二、python re模块三、进阶总结一、正则表达式基础 二、python re模块 注意:正则表达式 != re eg: 注意:如果返回的是对象,则需要...
    99+
    2024-04-02
  • python正则表达式re模块怎么使用
    这篇文章主要介绍“python正则表达式re模块怎么使用”,在日常操作中,相信很多人在python正则表达式re模块怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python正则表达式re模块怎么使用...
    99+
    2023-07-02
  • python正则表达式(re模块)的使用详解
    目录前言re.match函数匹配单个字符匹配多个字符匹配开头结尾匹配分组re.compile 函数re.search函数re.findall函数re.finditer函数re.sub...
    99+
    2024-04-02
  • Python正则表达中re模块的使用
    目录01、正则表达式1.1、限定匹配数量规则1.2、原生字符串1.3、分组匹配1.4、编译函数compile1.5贪婪模式和非贪婪模式01、正则表达式 学习正则表达式操作字符串,re...
    99+
    2024-04-02
  • Python正则表达式 re(regul
    1. 点..: 代表一个字符 (这个跟linux的正则表达式是不同的,那里.代表的是后面字符的一次或0次出现)2. 转义\\或者r'\': 如 r'python\.org' (对.符号的转义)3. ^ 非或叫做排除如[^abc]: 任何以非...
    99+
    2023-01-31
    正则表达式 Python regul
  • Python 08 re 正则表达式
    . 匹配除换行符以外的任意字符\w 匹配字母或数字或下划线或汉字\s 匹配任意的空白符\d 匹配数字\b 匹配单词的开始或结束^ 匹配字符串的开始$ 匹配字符串的结束 代码/语法 说明* 重复零次或更多次+ 重复一次或更多次 重复零次或一次...
    99+
    2023-01-31
    正则表达式 Python
  • Python正则表达式re模块详解(建议收藏!)
    目录前言match匹配字符串单字符匹配. 匹配任意一个字符\d 匹配数字\D 匹配非数字\S 匹配非空白\w 匹配单词、字符,如大小写字母,数字,_ 下划线\W 匹配非单词字符[ ]...
    99+
    2024-04-02
  • Python re正则表达式学习
    一、re.match re.match 尝试从字符串的开始匹配一个模式,如:下面的例子匹配第一个单词。 import re   text = "JGood is a handsome boy, he is cool, c...
    99+
    2023-01-31
    正则表达式 Python
  • python 关于正则表达式re
      1.正则表达式 re  典型的搜索和替换操作要求您提供与预期的搜索结果匹配的确切文本。虽然这种技术对于对静态文本执行简单搜索和替换任务可能已经足够了,但它缺乏灵活性,若采用这种方法搜索动态文本,即使不是不可能,至少也会变得很困难。  通...
    99+
    2023-06-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作