返回顶部
首页 > 资讯 > 后端开发 > Python >Python Web接口优化的方法教程
  • 315
分享到

Python Web接口优化的方法教程

2023-06-16 08:06:38 315人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

本篇内容主要讲解“python WEB接口优化的方法教程”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python Web接口优化的方法教程”吧!背景我们负责的一个业务平台,有次在发现设置页面的

本篇内容主要讲解“python WEB接口优化的方法教程”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习Python Web接口优化的方法教程”吧!

背景

我们负责的一个业务平台,有次在发现设置页面的加载特别特别地慢,简直就是令人发指

Python Web接口优化的方法教程

让用户等待 36s 肯定是不可能的,于是我们就要开启优化之旅了。

投石问路

既然是网站的响应问题,可以通过 Chrome 这个强大的工具帮助我们快速找到优化方向。

通过 Chrome 的 Network 除了可以看到接口请求耗时之外,还能看到一个时间的分配情况,选择一个配置没有那么多的项目,简单请求看看:

Python Web接口优化的方法教程

虽然只是一个只有三条记录的项目,加载项目设置都需要 17s,通过 Timing, 可以看到总的请求共耗时 17.67s ,但有 17.57s 是在 Waiting(TTFB) 状态。

TTFB 是 Time to First Byte 的缩写,指的是浏览器开始收到服务器响应数据的时间(后台处理时间+重定向时间),是反映服务端响应速度的重要指标。

Profile 火焰图 + 代码调优

那么大概可以知道优化的大方向是在后端接口处理上面,后端代码是 Python + flask 实现的,先不盲猜,直接上 Profile:

Python Web接口优化的方法教程

第一波优化:功能交互重新设计

说实话看到这段代码是绝望的:完全看不出什么?只是看到很多 gevent 和 Threading,因为太多协程或者线程

这时候一定要结合代码来分析(为了简短篇幅,参数部分用 “...” 代替):

def get_max_cpus(project_code, gids):      """      """     ...      # 再定义一个获取 cpu 的函数      def get_max_cpu(project_setting, gid, token, headers):          group_with_Machines = utils.get_groups(...)          hostnames = get_info_from_machines_info(...)          res = fetchers.MonitorapiFetcher.get(...)          vals = [              round(100 - val, 4)              for ts, val in res['series'][0]['data']              if not utils.is_nan(val)          ]          maxmax_val = max(vals) if vals else float('nan')          max_cpus[gid] = max_val           #  启动线程批量请求      for gid in gids:          t = Thread(target=get_max_cpu, args=(...))          threads.append(t)          t.start()         # 回收线程      for t in threads:          t.join()      return max_cpus

通过代码可以看到,为了更加快速获取 gids 所有的 cpu_max 数据,为每个 gid 分配一个线程去请求,最终再返回最大值。

这里会出现两个问题:

  1. 鸿蒙官方战略合作共建——HarmonyOS技术社区

  2.  在一个 web api 做线程的 创建 和 销毁 是有很大成本的,因为接口会频繁被触发,线程的操作也会频繁发生,应该尽可能使用线程池之类的,降低系统花销;

  3.  该请求是加载某个 gid (群组) 下面的机器过去 7 天的 CPU 最大值,可以简单拍脑袋想下,这个值不是实时值也不是一个均值,而是一个最大值,很多时候可能并没有想象中那么大价值;

既然知道问题,那就有针对性的方案:

  1. 鸿蒙官方战略合作共建——HarmonyOS技术社区

  2.  调整功能设计,不再默认加载 CPU 最大值,换成用户点击加载(一来降低并发的可能,二来不会影响整体);

  3.  因为 1 的调整,去掉多线程实现;

再看第一波优化后的火焰图:

Python Web接口优化的方法教程

这次看的火焰图虽然还有很大的优化空间,但起码看起来有点正常的样子了。

第二波优化:Mysql 操作优化处理

我们再从页面标记处(接口逻辑处)放大火焰图观察:

Python Web接口优化的方法教程

看到好大一片操作都是由 utils.py:get_group_profile_settings 这个函数引起的数据库操作热点。

同理,也是需要通过代码分析:

def get_group_profile_settings(project_code, gids):      # 获取 Mysql ORM 操作对象      ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))      session = get_postman_session()         profile_settings = {}      for gid in gids:          compound_name = project_code + ':' + gid          result = session.query(ProfileSetting).filter(              ProfileSetting.name == compound_name          ).first()                 if result:              resultresult = result.as_dict()              tag_indexes = result.get('tag_indexes')              profile_settings[gid] = {                  'tag_indexes': tag_indexes,                  'interval': result['interval'],                  'status': result['status'],                  'profile_machines': result['profile_machines'],                  'thread_settings': result['thread_settings']              }              ...(省略)      return profile_settings

看到 mysql ,第一个反应就是 索引问题,所以优先去看看数据库的索引情况,如果有索引的话应该不会是瓶颈:

Python Web接口优化的方法教程

很奇怪这里明明已经有了索引了,为什么速度还是这个鬼样子呢!

正当毫无头绪的时候,突然想起在 第一波优化 的时候, 发现 gid(群组)越多的影响越明显,然后看回上面的代码,看到那句:

for gid in gids:       ...

我仿佛明白了什么。

这里是每个 gid 都去查询一次数据库,而项目经常有 20 ~ 50+ 个群组,那肯定直接爆炸了。

其实 Mysql 是支持单字段多值的查询,而且每条记录并没有太多的数据,我可以尝试下用 Mysql 的 OR 语法,除了避免多次网络请求,还能避开那该死的 for

正当我想事不宜迟直接搞起的时候,余光瞥见在刚才的代码还有一个地方可以优化,那就是:

Python Web接口优化的方法教程

看到这里,熟悉的朋友大概会明白是怎么回事。

GetAttr 这个方法是Python 获取对象的 方法/属性 时候会用到,虽然不可不用,但是如果在使用太过频繁也会有一定的性能损耗。

结合代码一起来看:

def get_group_profile_settings(project_code, gids):      # 获取 Mysql ORM 操作对象      ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))      session = get_postman_session()         profile_settings = {}      for gid in gids:          compound_name = project_code + ':' + gid          result = session.query(ProfileSetting).filter(              ProfileSetting.name == compound_name          ).first()          ...

在这个遍历很多次的 for 里面,session.query(ProfileSetting) 被反复无效执行了,然后 filter 这个属性方法也被频繁读取和执行,所以这里也可以被优化。

总结下的问题就是:

数据库的查询没有批量查询;

ORM 的对象太多重复的生成,导致性能损耗;

属性读取后没有复用,导致在遍历次数较大的循环体内频繁 getAttr,成本被放大;

那么对症下药就是:

def get_group_profile_settings(project_code, gids):         # 获取 Mysql ORM 操作对象     ProfileSetting = unpurview(sandman.endpoint_class('profile_settings'))      session = get_postman_session()        # 批量查询 并将 filter 提到循环之外      query_results = query_instance.filter(          ProfileSetting.name.in_(project_code + ':' + gid for gid in gids)      ).all()      # 对全部的查询结果再单条处理      profile_settings = {}      for result in query_results:          if not result:              continue          resultresult = result.as_dict()          gid = result['name'].split(':')[1]          tag_indexes = result.get('tag_indexes')          profile_settings[gid] = {              'tag_indexes': tag_indexes,              'interval': result['interval'],              'status': result['status'],              'profile_machines': result['profile_machines'],              'thread_settings': result['thread_settings']          }              ...(省略)      return profile_settings

优化后的火焰图:

Python Web接口优化的方法教程

对比下优化前的相同位置的火焰图:

Python Web接口优化的方法教程

明显的优化点:优化前的,最底部的 utils.py:get_group_profile_settings 和 数据库相关的热点大大缩减。

优化效果

同一个项目的接口的响应时长从 37.6 s 优化成 1.47s,具体的截图:

Python Web接口优化的方法教程

优化总结

如同一句名言:

如果一个数据结构足够优秀,那么它是不需要多好的算法

在优化功能的时候,最快的优化就是:去掉那个功能!

其次快就是调整那个功能触发的 频率 或者 复杂度!

从上到下,从用户使用场景去考虑这个功能优化方式,往往会带来更加简单高效的结果,嘿嘿!

当然很多时候我们是无法那么幸运的,如果我们实在无法去掉或者调整,那么就发挥做程序猿的价值咯:Profile

针对 Python 可以尝试:cProflile + gprof2dot

而针对 Go 可以使用: pprof + go-torch

很多时候看到的代码问题都不一定是真正的性能瓶颈,需要结合工具来客观分析,这样才能有效直击痛点!

其实这个 1.47s,其实还不是最好的结果,还可以有更多优化的空间,比如:

  1.  前端渲染和呈现的方式,因为整个表格是有很多数据组装后再呈现的,响应慢的单元格可以默认先显示 菊花,数据返回再更新;

  2.  火焰图看到还有挺多细节可以优化,可以替换请求数据的外部接口,比如再优化彻底 GetAttr 相关的逻辑;

  3.  更极端就是直接 Python 转 GO;

但是这些优化已经不是那么迫切了,因为这个 1.47s 是比较大型项目的优化结果了,绝大部分的项目其实不到 1s 就能返回

再优化可能付出更大成本,而结果可能也只是从 500ms 到 400ms 而已,结果并不那么高性价比。

所以我们一定要时刻清晰自己优化的目标,时刻考虑 投入产出比,在有限的时间做出比较高的价值(如果有空闲时间当然可以尽情干到底)

到此,相信大家对“Python Web接口优化的方法教程”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

--结束END--

本文标题: Python Web接口优化的方法教程

本文链接: https://lsjlt.com/news/282802.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python Web接口优化的方法教程
    本篇内容主要讲解“Python Web接口优化的方法教程”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python Web接口优化的方法教程”吧!背景我们负责的一个业务平台,有次在发现设置页面的...
    99+
    2023-06-16
  • 探究Python并发编程中接口优化的实现方法。
    Python并发编程是一种非常流行的编程技术,它可以在多个线程或进程中同时执行代码,从而提高程序的运行效率。然而,在实现Python并发编程时,我们需要注意接口的优化,这可以帮助我们提高程序的运行效率和可靠性。 一、Python并发编程中的...
    99+
    2023-05-26
  • oracle表优化方法教程
    这篇文章主要讲解了“oracle表优化方法教程”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“oracle表优化方法教程”吧!1、建立实验表create ta...
    99+
    2024-04-02
  • MySQL大表优化的方法教程
    本篇内容介绍了“MySQL大表优化的方法教程”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!单表优化除非单表...
    99+
    2024-04-02
  • lvs+并发的优化方法教程
    这篇文章主要介绍“lvs+并发的优化方法教程”,在日常操作中,相信很多人在lvs+并发的优化方法教程问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”lvs+并发的优化方法教程”...
    99+
    2024-04-02
  • ASP 教程:如何优化接口并发性能?
    在现代互联网应用中,接口并发性能是一个非常重要的话题。在高并发场景下,如果我们的接口性能不足,就会出现系统崩溃、请求超时等问题,给用户带来非常不好的使用体验。因此,我们需要掌握一些优化接口并发性能的技巧,来提高我们的系统稳定性和用户体验。...
    99+
    2023-11-07
    教程 接口 并发
  • jQuery中优化Web应用程序的方法
    这篇文章给大家介绍jQuery中优化Web应用程序的方法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。jQuery让编写基于JavaScript的良好Web应用程序变得简单明了,但是要...
    99+
    2024-04-02
  • 如何在 Python 编程算法中优化实时接口?
    Python 是一种高级编程语言,因其易读、易写、易学等特点而备受青睐。在 Python 编程中,算法是一个非常重要的部分。随着现代技术的发展和应用,实时接口已经成为了许多应用场景中必不可少的一部分。在这篇文章中,我们将介绍如何在 Pyth...
    99+
    2023-10-02
    编程算法 接口 实时
  • Python 同步接口 leetcode:如何优化您的算法?
    Leetcode 是一家在线编程网站,提供各种算法和数据结构题目,可以帮助人们提高编程能力。Python 是一种流行的编程语言,也是 Leetcode 上广泛使用的语言之一。在本文中,我们将探讨如何使用 Python 的同步接口来优化您的...
    99+
    2023-10-23
    同步 接口 leetcode
  • 如何理解Python接口优化
    这篇文章主要讲解了“如何理解Python接口优化”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何理解Python接口优化”吧!背景我们负责的一个业务平台,有次在发现设置页面的加载特别特别地...
    99+
    2023-06-15
  • MySQL索引管理优化的方法教程
    这篇文章主要讲解了“MySQL索引管理优化的方法教程”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“MySQL索引管理优化的方法教程”吧! ...
    99+
    2024-04-02
  • Vue项目性能优化的方法教程
    本篇内容主要讲解“Vue项目性能优化的方法教程”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Vue项目性能优化的方法教程”吧!一、代码层面的优化1.1、v-if...
    99+
    2024-04-02
  • 如何在Python中优化并发编程接口?
    在当今的计算机领域中,处理大量数据和任务的需求越来越高。为了提高程序的效率,我们需要使用并发编程来实现任务的并行处理。在Python中,有多种方式来实现并发编程,如多线程、多进程和协程。然而,这些方式在实现上都有一定的限制和缺陷,因此需要优...
    99+
    2023-05-26
  • web网站优化的方法有哪些
    本篇内容介绍了“web网站优化的方法有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1 关键词设置装备...
    99+
    2024-04-02
  • Web图片优化的方法有哪些
    这篇文章主要讲解了“Web图片优化的方法有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Web图片优化的方法有哪些”吧!图像是web上提供的最基本的内容...
    99+
    2024-04-02
  • 如何在 IDE 中优化 PHP 接口编程算法?
    在开发 PHP 接口时,优化算法是非常重要的,因为它能够提高代码的性能和响应速度。在本文中,我们将介绍如何在 IDE 中优化 PHP 接口编程算法,以及一些实用的技巧和技术,帮助您更加高效地编写代码。 一、使用正确的数据结构 在 PHP ...
    99+
    2023-06-14
    接口 编程算法 ide
  • Shell接口编程的新思路:PHP实现算法优化
    Shell脚本一直是Unix/Linux系统中不可或缺的一部分,尤其在系统管理、自动化任务、批处理等方面发挥了重要作用。然而,随着应用需求的不断增加,Shell脚本的性能问题日益凸显,尤其是在大规模数据处理和复杂算法实现方面。为了解决这些...
    99+
    2023-08-31
    shell 接口 编程算法
  • Linux上的Java接口编程算法:如何优化性能?
    在Linux系统上,Java接口编程是一种非常常见的开发方式。但是,对于需要处理大量数据或者需要高性能的应用程序,优化Java接口的性能是非常必要的。本文将介绍一些优化Java接口性能的算法,并提供一些示例代码。 使用基本数据类型 在...
    99+
    2023-08-21
    接口 编程算法 linux
  • Linux服务器安全性:Web接口保护的持续优化
    在Linux服务器上保护Web接口的安全性是一项持续优化的任务。以下是一些可以考虑的措施:1. 使用强密码:确保Web接口的所有账户...
    99+
    2023-10-10
    Linux
  • 优化Python并发编程接口,如何提高程序效率?
    Python是一门高级编程语言,它被广泛应用于数据科学、机器学习、人工智能等领域。在这些领域中,程序的运行效率是一个非常重要的因素。为了提高程序效率,Python提供了多种并发编程接口。本文将介绍如何优化Python并发编程接口,以提高程序...
    99+
    2023-05-26
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作