返回顶部
首页 > 资讯 > 后端开发 > Python >加速Python数据分析的小技巧分别有哪些
  • 184
分享到

加速Python数据分析的小技巧分别有哪些

2023-06-16 06:06:37 184人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

这期内容当中小编将会给大家带来有关加速python数据分析的小技巧分别有哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。有时候,一点小小的黑客行为可以节省时间,挽救生命。一个小小的快捷方式或附加组件有时

这期内容当中小编将会给大家带来有关加速python数据分析的小技巧分别有哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

有时候,一点小小的黑客行为可以节省时间,挽救生命。一个小小的快捷方式或附加组件有时会被证明是天赐之物,并且可以真正提高生产力。所以,下面是我最喜欢的一些技巧,我以本文的形式一起使用和编译它们。其中,有些可能是相当有名的,有些可能是新的,但我相信下次您从事数据分析项目时,它们会非常有用。

1.Profiling the pandas dataframe

Profiling 是一个帮助我们理解数据的程序,而 pandas Profiling  正是实现这一点的一个 Python 包。这是对 pandas 数据帧进行探索性数据分析的一种简单快速的方法。pandas df.describe()和  df.info()函数通常用作 EDA 过程的第一步。但是,它只提供了非常基本的数据概述,对于大型数据集没有太大帮助。另一方面,pandas 分析函数使用  df.profile_report()扩展 pandas 数据帧,以便快速进行数据分析。它用一行代码显示了大量信息,在交互式 html  报告中也显示了这些信息。对于给定的数据集,pandas 分析包计算以下统计信息:

加速Python数据分析的小技巧分别有哪些

Pandas Profiling 包计算统计信息

安装

pip install pandas-profiling  --或者  conda install -c anaconda pandas-profiling

使用

让我们使用古老的 Titanic 数据集来演示通用的 Python 分析器的功能。

#importing the necessary packages import pandas as pd import pandas_profiling  # Depreciated: pre 2.0.0 version df = pd.read_csv('titanic/train.csv') pandas_profiling.ProfileReport(df)

注:在这篇文章发表一周后,Pandas-Profiling 发布了一个升级版本 2.0.0。其语法发生了一些变化,事实上,功能已经包含在 pandas  中,报告也变得更加全面。以下是最新的语法用法:

使用

要在 Jupyter notebook 中显示报告,请运行:

#Pandas-Profiling 2.0.0 df.profile_report()

这一行代码就是在 Jupyter notebook 中显示数据分析报告所需的全部代码。报告非常详细,必要时包括图表。

加速Python数据分析的小技巧分别有哪些

还可以将报告导出到具有以下代码的交互式 HTML 文件中。

profile = df.profile_report(title='Pandas Profiling Report') profile.to_file(outputfile="Titanic data profiling.html")

2.为 pandas plots 带来交互性

pandas  有一个内置的.plot()函数作为数据帧类的一部分。然而,用这个函数呈现的可视化并不是交互式的,这使得它不那么吸引人。相反,也不能排除使用  pandas.dataframe.plot()函数绘制图表的易用性。如果我们不需要对代码进行重大修改,就可以像绘制 pandas plots  那样绘出交互式图表呢?你可以在 Cufflinks 库的帮助下做到这一点。Cufflinks 将 plotly 的力量与 pandas  的灵活性结合起来,便于绘制。现在让我们来看看如何安装这个库并让它在 pandas 中工作。

安装

pip install plotly # Plotly is a pre-requisite before installing cufflinks pip install cufflinks

使用

#importing Pandas import pandas as pd #importing plotly and cufflinks in offline mode import cufflinks as cf  import plotly.offline cf.Go_offline() cf.set_config_file(offline=False, world_readable=True)

是时候用 Titanic 数据集来展示它的魔法了。

df.iplot()
加速Python数据分析的小技巧分别有哪些
df.iplot() vs df.plot()

右视图显示的是静态图表,左图表是交互式的,更详细地说,所有这一切在语法上都没有重大变化。

3.一点点 Magic

Magic 命令是 Jupyter notebook 中的一组方便的函数,旨在解决标准数据分析中的一些常见问题。在%lsmagic  的帮助下,您可以看到所有可用的 magic。

加速Python数据分析的小技巧分别有哪些

所有可用的 magic 函数列表

magic 命令有两种:行 magics(前缀为一个% 字符并在一行输入上操作)和单元 magics(用%%  前缀关联并在多行输入上操作)。如果设置为 1,则可以调用 magic 函数,而无需键入初始百分比。

让我们看看其中一些在常见数据分析任务中可能有用的功能:

%  pastebin

%Pastebin 将代码上载到 Pastebin 并返回 URL。Pastebin  是一种在线内容托管服务,我们可以在其中存储纯文本(如源代码片段),然后可以与其他人共享 URL。事实上,GitHub GISt 也类似于  Pastebin,尽管有版本控制。

考虑使用包含以下内容的 python script file.py:

#file.py def foo(x):     return x

使用 Jupyter notebook 中的%pastebin 生成 pastebin url

加速Python数据分析的小技巧分别有哪些

%matplotlib notebook

%matplotlib inline 函数用于呈现 Jupyter noteboo 中的静态 matplotlib  绘图。尝试用 notebook 替换内嵌部件,以轻松获得可缩放和可调整大小的绘图。确保在导入 Matplotlib 库之前调用了函数。

加速Python数据分析的小技巧分别有哪些

%matplotlib inline vs %matplotlib notebook

  • %run

%run 函数在 notebook 内运行 python 脚本。

%run file.py
  • %%writefile

%WriteFile 将单元格的内容写入文件。在这里,代码将被写入一个名为 foo 的文件,并保存在当前目录中。

加速Python数据分析的小技巧分别有哪些

  • %%latex

%%latex 函数将单元格内容呈现为 LaTeX。它可用于在单元中编写数学公式和方程。

加速Python数据分析的小技巧分别有哪些

4.发现和消除错误

interactive debugger  也是一个神奇的函数,但我已经为它提供了自己的一个类别。如果在运行代码单元时遇到异常,请在新行中键入%debug  并运行它。这将打开一个交互式调试环境,将您带到发生异常的位置。您还可以检查程序中分配的变量值,并在此处执行操作。要退出调试器,请单击 q。

加速Python数据分析的小技巧分别有哪些

5.输出也可以很漂亮

如果您想为数据结构生成美观的表示,pprint 是你想要的模块,它在打印字典或 JSON 数据时特别有用。让我们来看一个使用  print 和 pprint 显示输出的示例。

加速Python数据分析的小技巧分别有哪些

加速Python数据分析的小技巧分别有哪些

6.突出报警框

我们可以在您的 Jupyter  笔记本中使用警告/注释框来突出显示重要的内容或任何需要突出显示的内容。注释的颜色取决于警报的类型。只需在需要突出显示的单元格中添加以下代码。

蓝色警报框:信息提示

<div class="alert alert-block alert-info"> <b>Tip:</b> Use blue boxes (alert-info) for tips and notes. If it&rsquo;s a note, you don&rsquo;t have to include the Word “Note”. </div>

黄色警报框:警告

<div class="alert alert-block alert-warning"> <b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical fORMulas. </div>

绿色警报框:成功

<div class="alert alert-block alert-success"> Use green box only when necessary like to display links to related content. </div>

红色警报框:危险

<div class="alert alert-block alert-danger"> It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc. </div>

打印单元格的所有输出

考虑一个包含以下代码行的 Jupyter notebook 单元:

In [1]: 10+5                    11+6
Out [1]: 17

通常情况下,单元格中只有最后一个输出会被打印出来,对于其他输出,我们需要添加 print()函数。好吧,其实我们只需在 notebook  顶部添加以下代码片段就可以打印所有输出。

from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all"

现在所有的输出都被一个接一个地打印出来

In [1]: 10+5                    11+6          12+7
Out [1]: 15 Out [1]: 17 Out [1]: 19

要恢复到原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

8.使用「i」文件运行 python 脚本

从命令行运行 python 脚本的一种典型方法是:python hello.py。但是,如果您在运行同一脚本(如 python)时添加了一个额外的-i  hello.py,那么它提供了更多的优势。让我们看看怎么做。首先,只要程序不结束,python  就不会退出解释器。因此,我们可以检查变量的值以及程序中定义的函数的正确性。

加速Python数据分析的小技巧分别有哪些

其次,我们可以通过以下方式轻松调用 Python 调试器,因为我们仍在解释器中:

import pdb pdb.pm()

这将使我们进入异常发生的位置,然后我们可以处理代码。

加速Python数据分析的小技巧分别有哪些

查看来源可以点击这里。

9.自动注释代码

ctrl/cmd+/自动将单元格中选定的行注释掉,再次点击组合将取消对同一行代码的注释。

加速Python数据分析的小技巧分别有哪些

10.删除容易恢复难

你有没有不小心删除了 Jupyter notebook  上的一个单元的经历?如果有,那么这里有一个快捷方式可以撤消删除操作。如果删除了单元格的内容,则可以通过按 ctrl/cmd+z  轻松恢复该内容。如果需要恢复整个已删除单元格,请按 Esc+Z 或 EDIT > Undo 撤销删除单元格。

加速Python数据分析的小技巧分别有哪些
结论

上述就是小编为大家分享的加速Python数据分析的小技巧分别有哪些了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网Python频道。

--结束END--

本文标题: 加速Python数据分析的小技巧分别有哪些

本文链接: https://lsjlt.com/news/282671.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 加速Python数据分析的小技巧分别有哪些
    这期内容当中小编将会给大家带来有关加速Python数据分析的小技巧分别有哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。有时候,一点小小的黑客行为可以节省时间,挽救生命。一个小小的快捷方式或附加组件有时...
    99+
    2023-06-16
  • 有哪些Python数据分析技巧
    这篇文章主要介绍“有哪些Python数据分析技巧”,在日常操作中,相信很多人在有哪些Python数据分析技巧问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”有哪些Python数据分析技巧”的疑惑有所帮助!接下来...
    99+
    2023-06-16
  • 提高Python数据分析速度的技巧有哪些
    这篇文章主要介绍“提高Python数据分析速度的技巧有哪些”,在日常操作中,相信很多人在提高Python数据分析速度的技巧有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”提高Python数据分析速度的技巧...
    99+
    2023-06-02
  • 8个Python高效数据分析的技巧分别是哪些
    这期内容当中小编将会给大家带来有关8个Python高效数据分析的技巧分别是哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。不管是参加Kaggle比赛,还是开发一个深度学习应用,***步总是数据分析。介绍...
    99+
    2023-06-17
  • 加速Python编程的小技巧有哪些
    本篇内容主要讲解“加速Python编程的小技巧有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“加速Python编程的小技巧有哪些”吧!1.负索引人们喜欢使用序列,因为当我们知道元素的顺序,我...
    99+
    2023-06-15
  • 使用Python加速数据分析的10个简单技巧分别是什么
    这期内容当中小编将会给大家带来有关使用Python加速数据分析的10个简单技巧分别是什么,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。提示和技巧,尤其是在编程领域,可能是非常有用的。有时,一个小技巧可以节...
    99+
    2023-06-16
  • 11个Python Pandas小技巧分别是哪些
    今天就跟大家聊聊有关11个Python Pandas小技巧分别是哪些,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。或许本文中的某些命令你早已知晓,只是没意识到它还有这种打开方式。Pa...
    99+
    2023-06-16
  • Python并行加速的技巧有哪些
    本篇内容介绍了“Python并行加速的技巧有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1 前言我们在日常使用Python进行各种数据...
    99+
    2023-06-30
  • 分享python数据统计的一些小技巧
    最近在用python做数据统计,这里总结了一些最近使用时查找和总结的一些小技巧,希望能帮助在做这方面时的一些童鞋。有些技巧是很平常的用法,平时我们没有注意,但是在特定场景,这些小方法还是能带来很大的帮助。 ...
    99+
    2022-06-04
    小技巧 数据统计 python
  • 加快Python编程的小技巧有哪些
    这篇文章主要介绍“加快Python编程的小技巧有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“加快Python编程的小技巧有哪些”文章能帮助大家解决问题。1.负索引人们喜欢使用序列,因为当我们知...
    99+
    2023-06-27
  • 分库分表的技巧有哪些
    本篇内容介绍了“分库分表的技巧有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!分库分表分库分表是随着业...
    99+
    2024-04-02
  • 18个Python高效编程技巧分别有哪些
    这篇文章给大家介绍18个Python高效编程技巧分别有哪些,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。初识Python语言,觉得python满足了我上学时候对编程语言的所有要求。python语言的高效编程技巧让我们这...
    99+
    2023-06-16
  • Python函数加速数据分析处理速度的示例分析
    Python函数加速数据分析处理速度的示例分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。前言:Pandas 是 Python 中最广泛使用的数据分析和操作库...
    99+
    2023-06-22
  • 有哪些特别的CSS小技巧
    这篇文章主要讲解了“有哪些特别的CSS小技巧”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“有哪些特别的CSS小技巧”吧!1.在CSS中用attr()显示HT...
    99+
    2024-04-02
  • 提高网页加载速度的小技巧有哪些
    这期内容当中小编将会给大家带来有关提高网页加载速度的小技巧有哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。其次,关键字的排名与网页的打开速度也有关系(参考:影响关键字排名的重要因素),这个主要体现搜索...
    99+
    2023-06-08
  • JavaScript的10个实用小技巧分别是哪些
    本篇文章给大家分享的是有关JavaScript的10个实用小技巧分别是哪些,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。我一直在寻找提高效率的...
    99+
    2024-04-02
  • win7启动加速的技巧有哪些
    这篇文章主要介绍了win7启动加速的技巧有哪些的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇win7启动加速的技巧有哪些文章都会有所收获,下面我们一起来看看吧。一、删除多余的字体Windows 7中默认安装了不...
    99+
    2023-06-27
  • 加快Python运行时速度的技巧有哪些
    本篇内容介绍了“加快Python运行时速度的技巧有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!0.优化原理在深入探讨代码优化的细节之前...
    99+
    2023-06-16
  • Python开发的高级技巧分别是哪些
    Python开发的高级技巧分别是哪些,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。我列出几个Python高级技巧:1. contextmanager写Python代码的时候经常...
    99+
    2023-06-17
  • 使用NumPy进行数据分析的技巧和窍门有哪些?
    NumPy是一个Python科学计算的基础库,它提供了高性能的多维数组对象以及相应的操作函数,是Python数据分析的重要工具之一。本文将介绍NumPy中常用的数据分析技巧和窍门,并提供相关代码示例。 创建NumPy数组 NumPy数...
    99+
    2023-06-17
    教程 编程算法 numy
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作