返回顶部
首页 > 资讯 > 精选 >高效的Pandas函数有哪些
  • 533
分享到

高效的Pandas函数有哪些

2023-06-16 06:06:01 533人浏览 薄情痞子
摘要

本篇内容介绍了“高效的pandas函数有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!介绍这些函数之前,第一步先要导入pandas和nu

本篇内容介绍了“高效的pandas函数有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

介绍这些函数之前,第一步先要导入pandas和numpy。

import numpy as np import pandas as pd

高效的Pandas函数有哪些

1. Query

Query是pandas的过滤查询函数,使用布尔表达式来查询DataFrame的列,就是说按照列的规则进行过滤操作。

用法:

pandas.DataFrame.query(self, expr, inplace = False, **kwargs)

参数作用:

  • expr:要评估的查询字符串;

  • inplace=False:查询是应该修改数据还是返回修改后的副本

  • kwargs:dict关键字参数

首先生成一段df:

values_1 = np.random.randint(10, size=10) values_2 = np.random.randint(10, size=10) years = np.arange(2010,2020) groups = ['A','A','B','A','B','B','C','A','C','C'] df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2}) df

高效的Pandas函数有哪些

过滤查询用起来比较简单,比如要查列value_1<value_2的行记录:

df.query('value_1 < value_2')

高效的Pandas函数有哪些

查询列year>=2016的行记录:

df.query('year >= 2016 ')

高效的Pandas函数有哪些

2. Insert

Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。

用法:

Dataframe.insert(loc, column, value, allow_duplicates=False)

参数作用:

  • loc:int型,表示插入位置在第几列;若在第一列插入数据,则 loc=0

  • column:给插入的列取名,如 column='新的一列'

  • value:新列的值,数字、array、series等都可以

  • allow_duplicates:是否允许列名重复,选择Ture表示允许新的列名与已存在的列名重复

接着用前面的df:

高效的Pandas函数有哪些

在第三列的位置插入新列:

#新列的值 new_col = np.random.randn(10) #在第三列位置插入新列,从0开始计算 df.insert(2, 'new_col', new_col) df

高效的Pandas函数有哪些

3. Cumsum

Cumsum是pandas的累加函数,用来求列的累加值。

用法:

DataFrame.cumsum(axis=None, skipna=True, args, kwargs)

参数作用:

  • axis:index或者轴的名字

  • skipna:排除NA/null值

以前面的df为例,group列有A、B、C三组,year列有多个年份。我们只知道当年度的值value_1、value_2,现在求group分组下的累计值,比如A、2014之前的累计值,可以用cumsum函数来实现。

当然仅用cumsum函数没办法对groups (A, B, C)进行区分,所以需要结合分组函数groupby分别对(A, B, C)进行值的累加。

df['cumsum_2'] = df[['value_2','group']].groupby('group').cumsum() df

高效的Pandas函数有哪些

4. Sample

Sample用于从DataFrame中随机选取若干个行或列。

用法:

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

参数作用:

(1) n:要抽取的行数

(2) frac:抽取行的比例

  • 例如frac=0.8,就是抽取其中80%

(3) replace:是否为有放回抽样,

  • True:有放回抽样

  • False:未放回抽样

(4) weights:字符索引或概率数组

(5) random_state :随机数发生器种子

(6) axis:选择抽取数据的行还是列

  • axis=0:抽取行

  • axis=1:抽取列

比如要从df中随机抽取5行:

sample1 = df.sample(n=5) sample1

高效的Pandas函数有哪些

从df随机抽取60%的行,并且设置随机数种子,每次能抽取到一样的样本:

sample2 = df.sample(frac=0.6,random_state=2) sample2

高效的Pandas函数有哪些

5. Where

Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。

用法:

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None)

参数作用:

  • cond:布尔条件,如果 cond 为真,保持原来的值,否则替换为other

  • other:替换的特殊值

  • inplace:inplace为真则在原数据上操作,为False则在原数据的copy上操作

  • axis:行或列

将df中列value_1里小于5的值替换为0:

df['value_1'].where(df['value_1'] > 5 , 0)

高效的Pandas函数有哪些

Where是一种掩码操作。

掩码(英语:Mask)在计算机学科及数字逻辑中指的是一串二进制数字,通过与目标数字的按位操作,达到屏蔽指定位而实现需求。

6. Isin

Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。

用法:

Series.isin(values) 或者 DataFrame.isin(values)

筛选df中year列值在['2010','2014','2017']里的行:

years = ['2010','2014','2017'] df[df.year.isin(years)]

高效的Pandas函数有哪些

7. Loc and iloc

Loc和iloc通常被用来选择行和列,它们的功能相似,但用法是有区别的。

用法:

years = ['2010','2014','2017'] df[df.year.isin(years)]
  • loc:按标签(column和index)选择行和列

  • iloc:按索引位置选择行和列

选择df第1~3行、第1~2列的数据,使用iloc:

df.iloc[:3,:2]

高效的Pandas函数有哪些

使用loc:

df.loc[:2,['group','year']]1
高效的Pandas函数有哪些

提示:使用loc时,索引是指index值,包括上边界。iloc索引是指行的位置,不包括上边界。

选择第1、3、5行,year和value_1列:

df.loc[[1,3,5],['year','value_1']]

高效的Pandas函数有哪些

8. Pct_change

Pct_change是一个统计函数,用于表示当前元素与前面元素的相差百分比,两元素的区间可以调整。

比如说给定三个元素[2,3,6],计算相差百分比后得到[NaN, 0.5,  1.0],从第一个元素到第二个元素增加50%,从第二个元素到第三个元素增加100%。

用法:

DataFrame.pct_change(periods=1, fill_method=&lsquo;pad&rsquo;, limit=None, freq=None, **kwargs)

参数作用:

  • periods:间隔区间,即步长

  • fill_method:处理空值的方法

对df的value_1列进行增长率的计算:

df.value_1.pct_change()

高效的Pandas函数有哪些

9. Rank

Rank是一个排名函数,按照规则(从大到小,从小到大)给原序列的值进行排名,返回的是排名后的名次。

比如有一个序列[1,7,5,3],使用rank从小到大排名后,返回[1,4,3,2],这就是前面那个序列每个值的排名位置。

用法:

rank(axis=0, method: str = 'average', numeric_only: UNIOn[bool, NoneType] = None, na_option: str = 'keep', ascending: bool = True, pct: bool = False)

参数作用:

(1) axis:行或者列

(2) method:返回名次的方式,可选{&lsquo;average&rsquo;, &lsquo;min&rsquo;, &lsquo;max&rsquo;, &lsquo;first&rsquo;, &lsquo;dense&rsquo;}

  • method=average 默认设置: 相同的值占据前两名,分不出谁是1谁是2,那么去中值即1.5,下面一名为第三名

  • method=max: 两人并列第 2 名,下一个人是第 3 名

  • method=min: 两人并列第 1 名,下一个人是第 3 名

  • method=dense: 两人并列第1名,下一个人是第 2 名

  • method=first: 相同值会按照其在序列中的相对位置定值

(3) ascending:正序和倒序

对df中列value_1进行排名:

df['rank_1'] = df['value_1'].rank() df
高效的Pandas函数有哪些

10. Melt

Melt用于将宽表变成窄表,是 pivot透视逆转操作函数,将列名转换为列数据(columns name &rarr; column  values),重构DataFrame。

简单说就是将指定的列放到铺开放到行上变成两列,类别是variable(可指定)列,值是value(可指定)列。

高效的Pandas函数有哪些

用法:

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

参数作用:

  • frame:它是指DataFrame

  • id_vars [元组, 列表或ndarray, 可选]:不需要被转换的列名,引用用作标识符变量的列

  • value_vars [元组, 列表或ndarray, 可选]:引用要取消透视的列。如果未指定, 请使用未设置为id_vars的所有列

  • var_name [Scalar]:指代用于”变量”列的名称。如果为None, 则使用- -  frame.columns.name或&rsquo;variable&rsquo;

  • value_name [标量, 默认为&rsquo;value&rsquo;]:是指用于” value”列的名称

  • col_level [int或string, 可选]:如果列为MultiIndex, 它将使用此级别来融化

例如有一串数据,表示不同城市和每天的人口流动:

import pandas as pd df1 = pd.DataFrame({'city': {0: 'a', 1: 'b', 2: 'c'},                      'day1': {0: 1, 1: 3, 2: 5},                      'day2': {0: 2, 1: 4, 2: 6}}) df1
高效的Pandas函数有哪些

现在将day1、day2列变成变量列,再加一个值列:

pd.melt(df1, id_vars=['city'])

高效的Pandas函数有哪些

“高效的Pandas函数有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

--结束END--

本文标题: 高效的Pandas函数有哪些

本文链接: https://lsjlt.com/news/282660.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 有哪些高效的Pandas函数
    这篇文章主要讲解了“有哪些高效的Pandas函数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“有哪些高效的Pandas函数”吧!介绍这些函数之前,第一步先要...
    99+
    2024-04-02
  • 高效的Pandas函数有哪些
    本篇内容介绍了“高效的Pandas函数有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!介绍这些函数之前,第一步先要导入pandas和nu...
    99+
    2023-06-16
  • Pandas函数有哪些
    本篇内容介绍了“Pandas函数有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1.安装如果想自己运行...
    99+
    2024-04-02
  • 使用Numpy与Pandas的高效技巧有哪些
    本篇内容介绍了“使用Numpy与Pandas的高效技巧有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!Numpy 的 6 种高效函数首先...
    99+
    2023-06-15
  • pandas库有哪些常用函数
    pandas库常用函数有:1、read_csv()和read_excel()函数;2、head()和tail()函数;3、info()函数;4、describe()函数等。详细介绍:1、read_csv()和read_excel()函数,这...
    99+
    2023-11-22
    Pandas 常用函数
  • Pandas中DataFrame基本函数有哪些
    这篇文章主要介绍“Pandas中DataFrame基本函数有哪些”,在日常操作中,相信很多人在Pandas中DataFrame基本函数有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望...
    99+
    2024-04-02
  • Python中Pandas数据合并函数有哪些
    这篇文章主要介绍Python中Pandas数据合并函数有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1. concatconcat是pandas中专门用于数据连接合并的函数,功能非常强大,支持纵向合并和横向合并...
    99+
    2023-06-29
  • pandas数据分析常用函数有哪些
    小编给大家分享一下pandas数据分析常用函数有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧! 导入模块import pandas as pd   ...
    99+
    2023-06-01
  • Pandas和NumPy函数的使用方法有哪些
    本篇内容主要讲解“Pandas和NumPy函数的使用方法有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pandas和NumPy函数的使用方法有哪些”吧!1...
    99+
    2024-04-02
  • python高阶函数有哪些
    python中的高阶函数有:1.map()函数;2.reduce()函数;3.filter()函数;python中的高阶函数有以下几种map()函数map()函数是python中一个内置的高阶函数,它可以接收一个函数f和一个list,并通过...
    99+
    2024-04-02
  • python有哪些高级函数
    这篇文章给大家介绍python有哪些高级函数,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能...
    99+
    2023-06-14
  • 高级Python函数有哪些
    这篇文章主要介绍“高级Python函数有哪些”,在日常操作中,相信很多人在高级Python函数有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”高级Python函数有哪些”的疑惑有所帮助!接下来,请跟着小编...
    99+
    2023-06-16
  • JS5高阶函数有哪些
    这篇文章主要介绍“JS5高阶函数有哪些”,在日常操作中,相信很多人在JS5高阶函数有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”JS5高阶函数有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!1、...
    99+
    2023-06-21
  • 从Excel到Python最常用的Pandas函数有哪些
    从Excel到Python最常用的Pandas函数有哪些,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。生成数据表常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接...
    99+
    2023-06-02
  • python中有哪些高阶函数
    python中的高阶函数有以下几种map函数map函数可以接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并且把结果作为新的列表返回。reduce函数reduce函数是将一个函数作用到一个序列上,这个函数必...
    99+
    2024-04-02
  • C++ 函数提高执行效率的最佳实践有哪些?
    为了提升 c++++ 函数的执行效率,最佳实践包括:减少不必要的函数调用;内联小函数;优化循环(使用范围循环、register 关键字、避免循环中函数调用);避免动态分配(使用内存池和预...
    99+
    2024-04-18
    函数 c++ 执行效率
  • python3函数的高级特性有哪些
    本篇文章给大家分享的是有关python3函数的高级特性有哪些,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。python有哪些常用库python常用的库:1.requesuts;...
    99+
    2023-06-14
  • 常用的python高阶函数有哪些
    常用的Python高阶函数包括:1. map(function, iterable):对可迭代对象中的每个元素应用函数,并返回一个迭...
    99+
    2023-08-09
    python
  • js函数式编程中的高阶函数有哪些
    小编给大家分享一下js函数式编程中的高阶函数有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!函数式编程-->高阶函数缺点,不能进行流程控制mapcons...
    99+
    2023-06-17
  • SQL Server高级函数的用法有哪些
    本篇文章为大家展示了SQL Server高级函数的用法有哪些,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。SQL Server从2012版本开始,引入了LEAD和L...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作