这篇文章将为大家详细讲解有关详解Java中的树结构,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。常用的java框架有哪些1.springMVC,spring WEB mvc是一种基于Java
这篇文章将为大家详细讲解有关详解Java中的树结构,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
1.springMVC,spring WEB mvc是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架。2.shiro,Apache Shiro是Java的一个安全框架。3.mybatis,MyBatis 是支持普通 sql查询,存储过程和高级映射的优秀持久层框架。4.dubbo,Dubbo是一个分布式服务框架。5.Maven,Maven是个项目管理和构建自动化工具。6.RabbitMQ,RabbitMQ是用Erlang实现的一个高并发高可靠AMQP消息队列服务器。7.Ehcache,EhCache 是一个纯Java的进程内缓存框架。
与线性表表示的一一对应的线性关系不同,树表示的是数据元素之间更为复杂的非线性关系。
直观来看,树是以分支关系定义的层次结构。 树在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可以用树的形象来表示。
简单来说,树表示的是1对多的关系。
定义(逻辑结构):
树(Tree)是n( n>=0 )个结点的有限集合,没有结点的树称为空树,在任意一颗非空树中: 有且仅有一个特定的称为根(root)的结点 。
当n>1的时,其余结点可分为 m( m>0 ) 个互不相交的有限集T1,T2,…, Tm,其中每一个集合 Ti 本身又是一棵树,并且称之为根的子树。
注意:树的定义是一个递归定义,即在树的定义中又用到树的概念。
(1)一个结点的子树的根,称为该结点的孩子(儿子),相应的该结点称为子树的根的父亲。
(2)没有孩子的结点称为树叶,又叫叶子结点 。(国外, nil叫叶子) 具有相同父亲的结点互为兄弟(同胞, 姐妹)。
(3)从结点n1 到 nk 的路径定义为节点 n1 n2 … nk 的一个序列,使得对于 1 <= i < k,节点 ni是 ni+1 的父亲。这条路径的长是为该路径上边的条数,即 k-1。从每一个结点到它自己有一条长为 0 的路径。注意,在一棵树中从根到每个结点恰好存在一条路径。 如果存在从n1到n2的一条路径,那么n1是n2的一位祖先 ,而n2是n1的一个后裔。如果n1 != n2,那么n1是n2的真祖先, 而n2是n1的真后裔。
(4)结点的层级从根开始定义,根为第一层,根的孩子为第二层。若某结点在第i层,则其孩子就在i+1层。(树有层级定义)
(5)对任意结点ni,ni的深度为从根到ni的唯一路径的长。因此,根的深度为0。(深度)
(6)一颗树的高等于它根的高。一颗树的深度等于它最深的树叶的深度; 该深度总是等于这棵树的高。
(7)性质:如果一棵树有n个结点,那么它有n-1条边。(为什么呢?)
每一结点都有一个边指向它(除了根节点)
每一条边都指向一个结点
(8) 概念: 度 (图这种数据结构) 对图这种数据结构: 每个结点的度: 一般指有几个结点和我这个结点相关
树这种数据结构: 度: 一般指有几个孩子
怎么通过代码来模拟一个树
集合类: 数据容器
数组 链表, 数组+链表
数据结构表现形式:树
如果非要用数组存储一棵树的话, 也可以, 不过会存在各种问题。
如果用链表存储一棵树也会有一些问题( 1, 牺牲内存, 2, 多种结点类型)
(1)经过转化的树比较容易存储: 这种根据下面特点转化的树 被称为 二叉树。
① 如果一个结点 有孩子, 那么让他的第一个孩子, 作为这个结点的left子结点。
②如果一个结点有兄弟结点, 那么让他的兄弟结点, 作为这个结点的right子结点。
概念: 一个树, 每一个结点最多有两个孩子, 孩子有严格的左右之分
(1)二叉树具有以下重要性质:
①二叉树在第i层至多有2的(i-1)次方个节点
②层次为k的二叉树至多有2的k次方 - 1个节点
(2)对任何一颗二叉树T,如果其叶子节点数为n0 , 度为2的节点数为n2,则n0 = n2 + 1
(3)具有n个节点的完全二叉树,树的高度为log2n (向下取整)。
(4)如果对一颗有n个结点的完全二叉树的结点按层序从1开始编号,则对任意一结点有:
如果编号i为1,则该结点是二叉树的根;
如果编号i > 1,则其双亲结点编号为 parent(i) = i/2,
若 2i > n 则该结点没有左孩子,否则其左孩子的编号为 2i,
若 2i + 1 > n 则该结点没有右孩子,否则其右孩子的编号为 2i + 1。
(5)二叉树的父子结点关系: 2倍 或者 2倍+1关系
–> 二叉树可以用数组存储 就是根据上述性质(但是一般在实际应用和开发中, 我们一般用链表存储二叉树)
深度优先遍历: 栈
(1)先序遍历:先遍历根结点, 再遍历左子树, 再遍历右子树
(2)中序遍历:先遍历左子树, 再遍历根结点, 再遍历右子树
(3)后序遍历:先遍历左子树, 再遍历右子树, 再遍历根结点
广度优先遍历: 队列
树的广度优先遍历一般为层级遍历。(广度优先遍历–>图的广度遍历)
给一些序列(前中后序), 我们还原出一颗树原本的样子
Q1: 如果我们只知道前序,中序,后序中的某一种,能否构建出一棵二叉树?如果能,为什么?如果不能,试着举出反例。
答: 能构建一颗二叉树, 但是不能构建出一颗唯一的二叉树
Q2:如果我们只知道前序,中序,后序中的某两种,能否构建出一棵唯一的二叉树?如果能,为什么?如果不能,试着举出反例。
前序 + 中序 可以–> 前序可以确定根节点, 中序可以根据根节点划分左右子树
后序 + 中序 可以–> 后序可以确定根节点, 中序可以根据根节点划分左右子树
前序 + 后序, 不可以, 都只能确定根节点
就是在二叉树的基础上增减一个限定条件: 对树中每一个结点 它的左子树的结点比这个结点都小, 右子树上的结点比这个结点都大
注意: 递归需要注意的事情
1, 递归的核心思想: 设计的时候不要考虑开始和结束是怎么回事, 抓住核心逻辑, 局部样本
2, 注意出口问题: 递归要有出口
3, 如果实现一个递归方法, 不要让这个方法被外界直接访问(没有语法问题, 只不过操作行为比较危险)
4, 一定要注意问题规模。
public class MyBSTree<T extends Comparable<T>> { private node root;//二叉搜索树根节点 private int size;//二叉搜索树结点个数 //添加结点 public boolean add(T value) { // 对于一个二叉搜索树来讲我们不存储null: null不能比较大小 if (value == null) throw new IllegalArgumentException("The param is null"); //判断原本的树是否为空 if (root == null) { // 如果原本的树是一个空树, 那么这个添加的元素就是根节点 root = new Node(value, null, null); size++; return true; } //目前来看,树不空,值也不是null Node index = root;//比较结点 Node indexF = null;//比较结点的父结点 int com = 0;//比较value大小结果 while (index != null) { // 把要存储的值, 和遍历结点作比较, 进一步确定相对于mid存储的位置 com = index.value.compareTo(value); indexF = index; if (com > 0) { index = index.left; } else if (com < 0) { index = index.right; } else { // com = 0 // value 和 index存储的值一样 // 对于重复元素的处理方式 // 理论上: // 1, 计数法: 对于每一个结点都额外维护一个参数, 记录这个元素的重复数量 // 2, 拉链法: 在某个结点位置维护一个链表, 用一个链表代表一个结点 // 3, 修正的BST: 如果比较的过程中发现了重复元素, 向左存储 // 实际上: // 不让存 return false; } } if (com > 0) { indexF.left = new Node(value, null, null); } else { indexF.right = new Node(value, null, null); } size++; return true; } //是否存在指定值 public boolean contains(T value) { // 对于一个二叉搜索树来讲我们不存储null: null不能比较大小 if (value == null) throw new IllegalArgumentException("The param is null"); Node index = root; int com = 0; while (index != null) { com = value.compareTo(index.value); if (com > 0) { index = index.right; } else if (com < 0) { index = index.left; } else return true; } //如果代码走到这个位置, 意味着上述循环跳出条件是: index == null 意味着没有这个元素 return false; } //递归方法删除二叉搜索树结点 public boolean removeByRecursive(T value){ int oldSize = size; root = removeByRe(root,value); return size<oldSize; } // 实现以root为根节点的子树上删除值为value的结点 private Node removeByRe(Node root,T value){ if (root == null) return null; int com = value.compareTo(root.value); if (com>0){ //如果value存在, 在right子树上 root.right = removeByRe(root.right,value); return root; }else if (com<0){ //如果value存在, 在left子树上 root.left = removeByRe(root.left,value); return root; }else{ // 找到了要删除的结点 if (root.left!=null&&root.right!=null){ // 删除的结点是双分支结点 // 获取right子树的最小值 Node rightMin = root.right; while (rightMin.left!=null){ rightMin = rightMin.left; } //替换 root.value = rightMin.value; // 接下来, 去right子树上删除rightMin(此时rightMin一定不是双分支结点) // 递归调用删除方法, 在这个root的right子树上删除这个替换值 root.right = removeByRe(root.right,root.value); return root; } // 删除的是叶子或者单分支 Node node = root.left != null? root.left : root.right; size--; return node; } } //非递归方法删除二叉搜索树结点 public boolean removeByNonRecursive(T value) { //不存储null: null不能比较大小 if (value == null) throw new IllegalArgumentException("The param is null"); Node index = root; Node indexF = null; int com; while (index != null) { com = value.compareTo(index.value); if (com > 0) { indexF = index; index = index.right; } else if (com < 0) { indexF = index; index = index.left; } else break; } // indexF 是要删除结点的父结点 // index 是找到的要删除的结点 //如果index是null,没有包含删除的元素,返回false if (index == null) return false; //到这里,说明包含需要删除的元素 if (index.left != null && index.right != null) { //去right子树找一个最小值, 替换这个删除结点 Node rightMin = index.right; //替换结点的父结点 Node rightMinF = index; //找index.right子树的最小值, 最left的元素 while (rightMin.left != null) { rightMinF = rightMin; rightMin = rightMinF.left; } //到达这里:rightMin.left=null //用查找的right子树上的最小值, 替换这个要删除的双分支结点 index.value = rightMin.value; //将替换结点设置为后面需要删除的单分支结点 indexF = rightMinF; index = rightMin; } // 有可能原本就是叶子或者单分支 // 也有可能双分支已经替换了, 现在要删除的是哪个替换了的, 叶子或者单分支 // 必定是个叶子或者单分支: index // 同时我们还记录了index 的 父结点 indexF //寻找index的儿子结点ch: // 如果index是叶子 ,那么ch = null // 如果index是单分支, ch = 不为null单分支子结点 Node ch = index.left != null ? index.left : index.right; // 如果删除的是根节点, 并且根节点还是个单分支的结点, 对于上述代码会导致midF = null if (indexF == null) { root = ch; size--; return true; } //删除结点 if (indexF.left == index) { indexF.left = ch; } else indexF.right = ch; size--; return true; } //用栈来实现先中后序遍历: //①先序 public List<T> preOrder() { //保存遍历结果 List<T> list = new ArrayList<>(); //用栈来临时存储结点 MyLinkedStack<Node> stack = new MyLinkedStack<>(); //根节点入栈 stack.push(root); while (!stack.isEmpty()) { Node pop = stack.pop(); list.add(pop.value); if (pop.right != null) stack.push(pop.right); if (pop.left != null) stack.push(pop.left); } return list; } //②中序 public List<T> inOrder() { Stack<Node> stack = new Stack<>(); List<T> list = new ArrayList<>(); Node index = root; while (index != null || !stack.empty()) { while (index != null) { stack.push(index); index = index.left; } Node pop = stack.pop(); list.add(pop.value); index = pop.right; } return list; } //③后序 public List<T> postOrder() { Stack<Node> stack = new Stack<>(); List<T> list = new ArrayList<>(); stack.push(root); while (!stack.empty()) { Node pop = stack.pop(); list.add(0, pop.value); if (pop.left != null) stack.push(pop.left); if (pop.right != null) stack.push(pop.right); } return list; } //用递归来实现先中后序遍历 //①先序 public List<T> preOrderRecursive() { List<T> list = new LinkedList<>(); preRecursive(list, root); return list; } // 先序:根 左 右 private void preRecursive(List<T> list, Node node) { if (node == null) return; list.add(node.value); preRecursive(list, node.left); preRecursive(list, node.right); } //②中序 public List<T> inOrderRecursive() { List<T> list = new LinkedList<>(); inRecursive(list, root); return list; } // 中序遍历: 左 根 右 private void inRecursive(List<T> list, Node node) { if (node == null) return; inRecursive(list, node.left); list.add(node.value); inRecursive(list, node.right); } //③ 后序遍历 public List<T> postOrderRecursive() { List<T> list = new LinkedList<>(); postRecursive(list, root); return list; } // 后序: 左 右 根 private void postRecursive(List<T> list, Node node) { if (node == null) return; preRecursive(list, node.left); preRecursive(list, node.right); list.add(node.value); } // 层级: 广度优先搜索(BFS) public List<T> levOrder() { List<T> list = new ArrayList<>(); Queue<Node> queue = new LinkedBlockingQueue<>(); //根节点入队列 queue.offer(root); while (!queue.isEmpty()) { //出队列元素 Node poll = queue.poll(); //遍历 list.add(poll.value); //把出队列元素的左右子节点入队列 if (poll.left != null) queue.offer(poll.left); if (poll.right != null) queue.offer(poll.right); } return list; } // 建树: 给定前中序, 或者给定中后序, 构建出一棵二叉树 // 中序 [-50, -25, -20, -10, -5, 1, 2, 7, 10, 25, 30, 100] // 后序 [-20, -25, -50, -10, -5, 7, 2, 25, 30, 100, 10, 1] public Node buildTreeByInAndPostOrder(List<T> inOrder, List<T> postOrder) { Node treeRoot = buildTreeByInAndPostOrder2(inOrder, postOrder); return treeRoot; } private Node buildTreeByInAndPostOrder2(List<T> inOrder, List<T> postOrder) { if (inOrder.size() == 0) return null; if (inOrder.size() == 1) return new Node(inOrder.get(0), null, null); //找根结点: 后序的最后一个元素 T rootValue = postOrder.get(postOrder.size() - 1); //获得根节点在中序的位置 int rootAtInOrderIndex = inOrder.indexOf(rootValue); // 左子树的中序(中序中切割): 0 ~ rootAtInOrderIndex-1 // 左子树的后序(后序中切割): 0 ~ rootAtInOrderIndex -1 // 右子树的中序(中序中切割): rootAtInOrderIndex + 1 ~ size -1 // 右子树的后序(后序中切割): rootAtInOrderIndex ~ size - 2 //左子树 //subList():左闭右开 List<T> leftInOrder = inOrder.subList(0, rootAtInOrderIndex); List<T> leftPostOrder = postOrder.subList(0, rootAtInOrderIndex); //右子树 //subList():左闭右开 List<T> rightInOrder = inOrder.subList(rootAtInOrderIndex + 1, inOrder.size()); List<T> rightPostOrder = postOrder.subList(rootAtInOrderIndex, postOrder.size() - 1); //构建这次递归的根节点 Node node = new Node(rootValue, null, null); // 用递归方法处理, 获得左子树 node.left = buildTreeByInAndPostOrder2(leftInOrder, leftPostOrder); // 用递归方法处理, 获得右子树 node.right = buildTreeByInAndPostOrder2(rightInOrder, rightPostOrder); return node; } // 中序 [-50, -25, -20, -10, -5, 1, 2, 7, 10, 25, 30, 100] // 前序 1 -5 -10 -50 -25 -20 10 2 7 100 30 25 public Node buildTreeByInAndPreOrder(List<T> inOrder, List<T> preOrder) { Node treeRoot = buildTreeByInAndPreOrder2(inOrder, preOrder); return treeRoot; } private Node buildTreeByInAndPreOrder2(List<T> inOrder, List<T> preOrder) { if (inOrder.size() == 0) return null; if (inOrder.size() == 1) return new Node(inOrder.get(0), null, null); T rootValue = preOrder.get(0); int rootAtInOrderIndex = inOrder.indexOf(rootValue); //左子树 //subList():左闭右开 List<T> leftInOrder = inOrder.subList(0, rootAtInOrderIndex); List<T> leftPreOrder = preOrder.subList(1, rootAtInOrderIndex + 1); //右子树 //subList():左闭右开 List<T> rightInOrder = inOrder.subList(rootAtInOrderIndex+1,inOrder.size()); List<T> rightPreOrder = preOrder.subList(rootAtInOrderIndex+1,preOrder.size()); Node node = new Node(rootValue,null,null); node.left = buildTreeByInAndPreOrder2(leftInOrder,leftPreOrder); node.right = buildTreeByInAndPreOrder2(rightInOrder,rightPreOrder); return node; } //判空 public boolean isEmpty() { return size == 0; } //返回结点个数 public int size() { return size; } class Node { T value; Node left; Node right; public Node(T value, Node left, Node right) { this.value = value; this.left = left; this.right = right; } }}
关于详解Java中的树结构就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
--结束END--
本文标题: 详解Java中的树结构
本文链接: https://lsjlt.com/news/275824.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0