返回顶部
首页 > 资讯 > 精选 >怎么用JavaScript学习算法复杂度
  • 888
分享到

怎么用JavaScript学习算法复杂度

2023-06-14 22:06:59 888人浏览 泡泡鱼
摘要

这篇文章给大家分享的是有关怎么用javascript学习算法复杂度的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。JavaScript的作用是什么1、能够嵌入动态文本于html页面。2、对浏览器事件做出响应。3、读

这篇文章给大家分享的是有关怎么用javascript学习算法复杂度的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

JavaScript的作用是什么

1、能够嵌入动态文本于html页面。2、对浏览器事件做出响应。3、读写HTML元素。4、在数据被提交到服务器之前验证数据。5、检测访客的浏览器信息。6、控制cookies,包括创建和修改等。7、基于node.js技术进行服务器编程

概述

在本文中,我们将探讨 “二次方” 和 “n log(n)” 等术语在算法中的含义。

在后面的例子中,我将引用这两个数组,一个包含 5 个元素,另一个包含 50 个元素。我还会用到JavaScript中方便的perfORMance api来衡量执行时间的差异。

const smArr = [5, 3, 2, 35, 2];const bigArr = [5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2];

什么是 Big O 符号?

Big O 表示法是用来表示随着数据集的增加,计算任务难度总体增长的一种方式。尽管还有其他表示法,但通常 big O 表示法是最常用的,因为它着眼于最坏的情况,更容易量化和考虑。最坏的情况意味着完成任务需要最多的操作次数;如果你在一秒钟内就能恢复打乱魔方,那么你只拧了一圈的话,不能说自己是做得最好的。

当你进一步了解算法时,就会发现这非常有用,因为在理解这种关系的同时去编写代码,就能知道时间都花在了什么地方。

当你了解更多有关 Big O 表示法的信息时,可能会看到下图中不同的变化。我们希望将复杂度保持在尽可能低的水平,最好避免超过 O(n)。

怎么用JavaScript学习算法复杂度

O(1)

这是理想的情况,无论有多少个项目,不管是一个还是一百万个,完成的时间量都将保持不变。执行单个操作的大多数操作都是 O(1)。把数据写到数组、在特定索引处获取项目、添加子元素等都将会花费相同的时间量,这与数组的长度无关。

const a1 = performance.now();smArr.push(27);const a2 = performance.now();console.log(`Time: ${a2 - a1}`); // Less than 1 Millisecondconst b1 = performance.now();bigArr.push(27);const b2 = performance.now();console.log(`Time: ${b2 - b1}`); // Less than 1 Millisecond

O(n)

在默认情况下,所有的循环都是线性增长的,因为数据的大小和完成的时间之间存在一对一的关系。所以如果你有 1,000 个数组项,将会花费的 1,000 倍时间。

const a1 = performance.now();smArr.forEach(item => console.log(item));const a2 = performance.now();console.log(`Time: ${a2 - a1}`); // 3 Millisecondsconst b1 = performance.now();bigArr.forEach(item => console.log(item));const b2 = performance.now();console.log(`Time: ${b2 - b1}`); // 13 Milliseconds

O(n^2)

指数增长是一个陷阱,我们都掉进去过。你是否需要为数组中的每个项目找到匹配对?将循环放入循环中是一种很好的方式,可以把 1000 个项目的数组变成一百万个操作搜索,这将会使你的浏览器失去响应。与使用双重嵌套循环进行一百万次操作相比,最好在两个单独的循环中进行 2,000 次操作。

const a1 = performance.now();smArr.forEach(() => {    arr2.forEach(item => console.log(item));});const a2 = performance.now();console.log(`Time: ${a2 - a1}`); // 8 Millisecondsconst b1 = performance.now();bigArr.forEach(() => {    arr2.forEach(item => console.log(item));});const b2 = performance.now();console.log(`Time: ${b2 - b1}`); // 307 Milliseconds

O(log n)

我认为关于对数增长最好的比喻,是想象在字典中查找像 “notation” 之类的单词。你不会在一个词条一个词条的去进行搜索,而是先找到 “N” 这一部分,然后是 “OPQ” 这一页,然后按字母顺序搜索列表直到找到匹配项。

通过这种“分而治之”的方法,找到某些内容的时间仍然会因字典的大小而改变,但远不及 O(n) 。因为它会在不查看大部分数据的情况下逐步搜索更具体的部分,所以搜索一千个项目可能需要少于 10 个操作,而一百万个项目可能需要少于 20 个操作,这使你的效率最大化。

在这个例子中,我们可以做一个简单的快速排序

const sort = arr => {  if (arr.length < 2) return arr;  let pivot = arr[0];  let left = [];  let right = [];  for (let i = 1, total = arr.length; i < total; i++) {    if (arr[i] < pivot) left.push(arr[i]);    else right.push(arr[i]);  };  return [    ...sort(left),    pivot,    ...sort(right)  ];};sort(smArr); // 0 Millisecondssort(bigArr); // 1 Millisecond

O(n!)

最糟糕的一种可能性是析因增长。最经典的例子就是旅行的推销员问题。如果你要在很多距离不同的城市之间旅行,如何找到在所有城市之间返回起点的最短路线?暴力方法将是检查每个城市之间所有可能的路线距离,这是一个阶乘并且很快就会失控。

由于这个问题很快会变得非常复杂,因此我们将通过简短的递归函数演示这种复杂性。这个函数会将一个数字去乘以函数自己,然后将数字减去1。阶乘中的每个数字都会这样计算,直到为 0,并且每个递归层都会把其乘积添加到原始数字中。

阶乘只是从 1 开始直至该数字的乘积。那么6!是1x2x3x4x5x6 = 720。

const factorial = n => {  let num = n;  if (n === 0) return 1  for (let i = 0; i < n; i++) {    num = n * factorial(n - 1);  };  return num;};factorial(1); // 2 Millisecondsfactorial(5); // 3 Millisecondsfactorial(10); // 85 Millisecondsfactorial(12); //  11,942 Milliseconds

我原本打算显示factorial(15),但是 12 以上的值都太多,并且使页面崩溃了,这也证明了为什么需要避免这种情况。

感谢各位的阅读!关于“怎么用JavaScript学习算法复杂度”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

--结束END--

本文标题: 怎么用JavaScript学习算法复杂度

本文链接: https://lsjlt.com/news/275643.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 怎么用JavaScript学习算法复杂度
    这篇文章给大家分享的是有关怎么用JavaScript学习算法复杂度的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。JavaScript的作用是什么1、能够嵌入动态文本于HTML页面。2、对浏览器事件做出响应。3、读...
    99+
    2023-06-14
  • 如何用JavaScript学习算法复杂度
    本篇内容介绍了“如何用JavaScript学习算法复杂度”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!在本...
    99+
    2024-04-02
  • 怎么理解Java算法复杂度
    本篇内容主要讲解“怎么理解Java算法复杂度”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么理解Java算法复杂度”吧!大O符号衡量时间复杂度通常使用”大O符号“。什么是大O符号?我们需要先看...
    99+
    2023-06-02
  • web算法复杂度怎么理解
    本篇内容介绍了“web算法复杂度怎么理解”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!算法学(Algorithmics)是设计和研究算法的科...
    99+
    2023-06-03
  • 递归算法时间复杂度怎么算
    递归算法的时间复杂度可以通过递归树来计算。递归树是一个树形结构,表示递归算法的执行过程。树的根节点表示原始问题,每个节点表示递归调用...
    99+
    2023-05-30
    递归算法时间复杂度 递归算法
  • 算法分类 ,时间复杂度 ,空间复杂度,优
        今天给大家带来一篇关于算法排序的分类,算法的时间复杂度,空间复杂度,还有怎么去优化算法的文章,喜欢的话,可以关注,有什么问题,可以评论区提问,可以与我私信,有什么好的意见,欢迎提出. 前言: 算法的复杂度分为时间复杂度与空间复杂...
    99+
    2023-01-30
    复杂度 算法 时间
  • web算法的时间复杂度和空间复杂度是什么
    这篇文章主要介绍了web算法的时间复杂度和空间复杂度是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇web算法的时间复杂度和空间复杂度是什么文章都会有所收获,下面我们一起来...
    99+
    2024-04-02
  • C语言算法的时间复杂度和空间复杂度
    目录1.算法效率1.1 如何衡量一个算法的好坏1.2算法的复杂度2.时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3常见时间复杂度计算举例 3.空间复杂度4...
    99+
    2024-04-02
  • 八大排序算法(含时间复杂度、空间复杂度、算法稳定性)
    文章目录 八大排序算法(含时间复杂度、空间复杂度、算法稳定性)1、(直接)插入排序1.1、算法思想1.2、排序过程图解1.3、排序代码 2、希尔排序3、冒泡排序3.1、算法思想3.2、排...
    99+
    2023-10-19
    算法 排序算法 c语言 c++
  • 数据结构和算法:算法复杂度
    我们开始了算法复杂度的学习,本期教程我们学习后半段。复杂度只考虑操作数目的一个数量级(忽略了其他的组分),这是一种近似。为了表示这种近似,我们使用一个特定的符号,就是著名的 大 O 符号。大 O 符号(Big O notation...
    99+
    2023-06-01
  • Java算法之时间复杂度和空间复杂度的概念和计算
    目录一、算法效率二、时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3 时间复杂度的三种情况2.4 常见时间复杂度计算举例2.4.1 例子2.4.2 冒泡排序时间复杂度...
    99+
    2024-04-02
  • 数据结构--算法的时间复杂度和空间复杂度
    文章目录 算法效率时间复杂度时间复杂度的概念大O的渐进表示法计算实例 时间复杂度实例 常见复杂度对比例题 算法效率 算法效率是指算法在计算机上运行时所消耗的时间和资源。这是衡量算法...
    99+
    2023-09-08
    算法 数据结构 时间效率 复杂度
  • 数据结构与算法—时间复杂度和空间复杂度
    目录 1. 什么是数据结构? 2.什么是算法? 3、算法的复杂度 4、时间复杂度 (1) 时间复杂度的概念:  (2) 大O的渐进表示法:  六个例题: (3) 时间复杂度对比:  两个例题:  OJ题分析时间复杂度 5、空间复杂度 (1...
    99+
    2023-10-24
    数据结构
  • C语言中算法的时间复杂度和空间复杂度是什么
    这篇文章给大家分享的是有关C语言中算法的时间复杂度和空间复杂度是什么的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。1.前言1.1 什么是数据结构?数据结构(Data Structure)是计算机存储、组织数据的方...
    99+
    2023-06-29
  • 递归算法的时间复杂度
    递归算法应该都不陌生,其实最开始遇见递归应该是在数学课上,类似于f(x)=f(x-1)+f(x+1),f(1)=1,f(2)=4,f(3)=3这种数学题大家应该见过不少,其实思想就是层层递归,最终将目标值用...
    99+
    2024-04-02
  • 如何理解算法的复杂度
    本篇内容主要讲解“如何理解算法的复杂度”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何理解算法的复杂度”吧!1. Motivation - 为什么需要复杂度分...
    99+
    2024-04-02
  • 如何理解算法时间复杂度
    这篇文章主要讲解了“如何理解算法时间复杂度”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何理解算法时间复杂度”吧!我们可以用下面的表达式来表示:通常主要有...
    99+
    2024-04-02
  • 递归算法的时间复杂度是什么
    递归算法的时间复杂度取决于递归的深度以及每次递归的时间复杂度。如果递归的深度为n,每次递归的时间复杂度为T,那么递归算法的时间复杂度...
    99+
    2023-08-28
    递归算法
  • C语言 超详细讲解算法的时间复杂度和空间复杂度
    目录1.前言1.1 什么是数据结构?1.2 什么是算法?2.算法效率2.1 如何衡量一个算法的好坏2.2 算法的复杂度2.3 复杂度在校招中的考察3.时间复杂度3.1 时间复杂度的概...
    99+
    2024-04-02
  • javascript算法学习实现代码
    排序 var len = 100000; var i; var arr = []; for(i=0; i...
    99+
    2022-11-21
    javascript 算法学习
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作