Python 官方文档:入门教程 => 点击学习
这篇文章主要介绍python中OpenCV的知识点示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!图像翻转使用Python的一个包,imutils。使用下面的指令可以安装。pip install 
这篇文章主要介绍python中OpenCV的知识点示例,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
使用Python的一个包,imutils。使用下面的指令可以安装。
pip install imutils
imutils包的GitHub地址:https://github.com/jrosebr1/imutils
CSDN镜像:Https://codechina.csdn.net/mirrors/jrosebr1/imutils
可以在上面这个地址里面学习更多的使用方式。
import cv2import imutils'''imutils.rotate第一个参数是翻转的图像,第二个参数的翻转角度函数还提供翻转中心的设置,但默认就是中心翻转。'''vc = cv2.VideoCapture(0)if vc.isOpened(): flag, frame = vc.read() img = imutils.rotate(frame, 180) # 图像翻转 cv2.imshow("frame", img)else: flag = Falsewhile flag: flag, frame = vc.read() if frame is None: break if flag is True: img = imutils.rotate(frame, 180) # 图像翻转 cv2.imshow("frame", img) if cv2.waiTKEy(10) == 27: breakvc.release()cv2.destroyAllwindows()
这样写的话,最后的输出图像就是翻转180度的。
imutils包里还有其他好用的函数,resizing、4-point Perspective TransfORM、Sorting Contours等等。
这个效果同样也是依靠imutils包完成。
from imutils import contoursimport cv2'''contours.sort_contours可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"返回值为轮廓和外接矩形contours.label_contourcontours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号也可以直接使用cv2.drawContours直接画轮廓'''img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--vscode\shapes.png")draw_img = img.copy()img_rect = img.copy()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)img = cv2.Canny(gray, 10, 20) # Canny边缘检测cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 获得轮廓(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom") # 对轮廓进行排序处理for (i, c) in enumerate(cnts): sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)# 根据boundingBoxes画外接矩形for (x, y, w, h) in boundingBoxes: img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)cv2.imshow("top-to-bottom", sortedImage)cv2.imshow("rect", img_rect)cv2.waitKey(0)cv2.destroyAllWindows()
这样写的话,最后的输出图像就是翻转180度的。
imutils包里还有其他好用的函数,resizing、4-point Perspective Transform、Sorting Contours等等。
这个效果同样也是依靠imutils包完成。
from imutils import contoursimport cv2'''contours.sort_contours可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"返回值为轮廓和外接矩形contours.label_contourcontours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号也可以直接使用cv2.drawContours直接画轮廓'''img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--VScode\shapes.png")draw_img = img.copy()img_rect = img.copy()gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)img = cv2.Canny(gray, 10, 20) # Canny边缘检测cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 获得轮廓(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom") # 对轮廓进行排序处理for (i, c) in enumerate(cnts): sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)# 根据boundingBoxes画外接矩形for (x, y, w, h) in boundingBoxes: img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)cv2.imshow("top-to-bottom", sortedImage)cv2.imshow("rect", img_rect)cv2.waitKey(0)cv2.destroyAllWindows()
颜色识别是在HSV空间内进行的,因此在使用之前先进行颜色空间的转换。
'''使用下面这个函数进行转换,第一个参数填写要转换的图片,第二个参数填写cv2.COLOR_BGR2HSV'''cv2.cvtColor
import cv2import numpy as np'''cv2.inRange函数很简单,参数有三个第一个参数:hsv指的是原图第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0而在lower_red~upper_red之间的值变成255'''# 阈值lower_green = np.array([50, 255, 255])upper_green = np.array([70, 255, 255])img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\photo.jpg")img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)mask_green = cv2.inRange(img_hsv, lower_green, upper_green)cv2.imshow("img_or", mask_green)# 使用下面这个函数能显示原来的颜色。res_green = cv2.bitwise_and(img, img, mask=mask_green)cv2.imshow("img", res_green)cv2.waitKey(0)cv2.destroyAllWindows()
在进行颜色识别时,难免会出现“漏颜色”的现象,也就是会出现没识别全的现象。这个时候可以再对图像进行处理,比如说进行形态学处理,让图像更加饱满之类的。
import cv2color = np.uint8([[[193, 189, 147]]]) # 参数填写BGR的值hsv = cv2.cvtColor(color, cv2.COLOR_BGR2HSV)print(hsv) # 打印出来的数值就是对应的HSV值
程序运行的结果是
[[[ 93 61 193]]]
这个就是对应的HSV的值。
根据之前写的颜色识别,就需要把对应的阈值写出。具体写法就是保持S和V不变,H加减10。这样的话就可以写出高低阈值然后应用到颜色识别里面就可以了。
import cv2import numpy as npdef function(x): lowH = cv2.getTrackbarPos("lowH", "img_666") lowS = cv2.getTrackbarPos("lowS", "img_666") lowV = cv2.getTrackbarPos("lowV", "img_666") HighH = cv2.getTrackbarPos("HighH", "img_666") HighS = cv2.getTrackbarPos("HighS", "img_666") HighV = cv2.getTrackbarPos("HighV", "img_666") # print(lowH, lowS, lowV, HighH, HighS, HighV) lower = np.uint8([lowH, lowS, lowV]) upper = np.uint8([HighH, HighS, HighV]) mask = cv2.inRange(img_hsv, lower, upper) res = cv2.bitwise_and(img, img, mask=mask) cv2.imshow("img", res)img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\test.jpg")img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)cv2.namedWindow("img_666")cv2.createTrackbar("lowH", "img_666", 0, 179, function)cv2.createTrackbar("lowS", "img_666", 0, 255, function)cv2.createTrackbar("lowV", "img_666", 0, 255, function)cv2.createTrackbar("HighH", "img_666", 0, 179, function)cv2.createTrackbar("HighS", "img_666", 0, 255, function)cv2.createTrackbar("HighV", "img_666", 0, 255, function)cv2.imshow("img", img)cv2.waitKey(0)cv2.destroyAllWindows()
写了一个比较垃圾的阈值编辑器。。。就不多解释了。。
以上是“python中OpenCV的知识点示例”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网Python频道!
--结束END--
本文标题: python中OpenCV的知识点示例
本文链接: https://lsjlt.com/news/269668.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0