原:八皇后问题的递归和非递归实现八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名 的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线
原:八皇后问题的递归和非递归实现
八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名
的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即
任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后
来有人用图论的方法解出92种结果。事实上就是有92种解法。
以下是code:
[@more@]import java.io.*;
import java.util.*;
class Queens {
final boolean available = true;
final int squares =5, nORM = squares - 1;
int[] positionInRow = new int[squares];
boolean[] column = new boolean[squares];
boolean[] leftDiaGonal = new boolean[squares*2 - 1];
boolean[] rightDiagonal = new boolean[squares*2 - 1];
int howMany = 0;
List queensList = new ArrayList();
Queens() {
for (int i = 0; i < squares; i++) {
positionInRow[i] = -1;
column[i] = available;
}
for (int i = 0; i < squares*2 - 1; i++)
leftDiagonal[i] = rightDiagonal[i] = available;
}
void printBoard(PrintStream out, int row, int col) {
out.println("row = " +row + ", col = " + col);
}
void putQueen(int row) {
int[] arr = null;
for (int col = 0; col < squares; col++)
if (column[col] == available &&
leftDiagonal [row+col] == available &&
rightDiagonal[row-col+norm] == available) {
positionInRow[row] = col;
column[col] = !available;
leftDiagonal[row+col] = !available;
rightDiagonal[row-col+norm] = !available;
if (row < squares-1)
putQueen(row+1);
else {
for(int kk=0; kk < positionInRow.length; kk++ ) {
System.out.print(positionInRow[kk] +", ");
}
System.out.println();
arr =new int[positionInRow.length];
System.arraycopy(positionInRow, 0, arr, 0, positionInRow.length);
queensList.add(arr);
this.howMany ++;
}
column[col] = available;
leftDiagonal[row+col] = available;
rightDiagonal[row-col+norm] = available;
}
}
void putQueen() {
int times = 1;
boolean flag=false;
int[] st = new int[squares];
int[] st2 = new int[squares];
int top =0;
for(int row=0, col=0; row < squares; ) {
for(; col
leftDiagonal [row+col] == available &&
rightDiagonal[row-col+norm] == available) {
positionInRow[row] = col;
column[col] = !available;
leftDiagonal[row+col] = !available;
rightDiagonal[row-col+norm] = !available;
st[top]=row;
st2[top]=col;
top++;
col=0;
row++;
flag = true;
break;
}
}
if (row == squares)
for(int k=0; k < positionInRow.length; k++) {
if(positionInRow[k] != -1) {
if(k==positionInRow.length-1) {
for(int kk=0; kk < positionInRow.length; kk++ ) {
System.out.print(positionInRow[kk] +", ");
}
System.out.println();
this.howMany ++;
}
}
}
if(st2[0]==squares-1&&top==0)return;
if( !flag) {
if(top!=0) {
top--;row=st[top];col=st2[top];
column[col] = available;
leftDiagonal[row+col] = available;
rightDiagonal[row-col+norm] = available;
col++;
}
}
flag=false;
if(row==squares ) {
row=0;
}
}
}
void getAllSymmetricalQueens() {
int[] q, q2;
for(int i=0; i
for(int j=0; j
int k;
for( k=0;k
break;
}
if(k==squares) {
for(k=0; k
System.out.print(" and ");
for(k=0; k
System.out.print(" are symmetricaln");
}
}
}
}
public static void main(String args[]) {
Queens queens = new Queens();
queens.putQueen(0); System.out.println("----------------");
queens.putQueen();
System.out.println(queens.howMany + " solutions found.");
queens.getAllSymmetricalQueens();
}
}
--结束END--
本文标题: 原:八皇后问题的递归和非递归Java实现
本文链接: https://lsjlt.com/news/232077.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0