返回顶部
首页 > 资讯 > 后端开发 > Python >怎么用python进行客户价值分析
  • 751
分享到

怎么用python进行客户价值分析

2023-06-02 11:06:21 751人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

今天就跟大家聊聊有关怎么用python进行客户价值分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。一个完整的数据分析项目由如下几个步骤组成:1)数据获取:分为本地文本文件、数据库链

今天就跟大家聊聊有关怎么用python进行客户价值分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

一个完整的数据分析项目由如下几个步骤组成:

1)数据获取:分为本地文本文件、数据库链接、爬虫技术等方式获取数据;

2)数据存储:存到本文本文件、数据库分布式文件系统等;

3)数据预处理:据经验,占80%的工作量。可以使用Numpy和pandas这两个工具库;

4)建模与分析:这一阶段首先要清楚数据的结构,结合项目需求来选取模型,常见的数据挖掘模型有如下图所示:

 怎么用python进行客户价值分析

    该阶段常用工具库分为如下两个:

    (1)scikit-learn-适用Python实现的机器学习算法库。scikit-learn可以实现数据预处理、分类、回归、降维、模型选择等常用的机器学习算法。

    (2)Tensorflow-适用于深度学习且数据处理需求不高的项目。

5)可视化分析:Python目前主流的可视化工具有Matplotlib、Seaborn、Pyecharts等。

        在整个数据分析流程,无论是数据提取、数据预处理、数据建模和分析,还是数据可视化,Python目前已经可以很好地支持我们的数据分析工作。有了Python入门基础后,我们接下来我们以“航空公司客户价值分析为例”,体验简要实际分析过程。

假设数据是之前已将采集或记录好的,那我们从将数据导入和预处里开始。

缺失及异常数值的处理,代码如下:

import numpy as np

import pandas as pd

airline_data = pd.read_csv('../data/air_data.csv', encoding='gb18030') #导入航空数据

print('原始数据的形状为:',airline_data.shape)

## 去除票价为空的记录

exp1 = airline_data["SUM_YR_1"].notnull()

exp2 = airline_data["SUM_YR_2"].notnull()

exp = exp1 & exp2

airline_notnull = airline_data.loc[exp,:]

print('删除缺失记录后数据的形状为:',airline_notnull.shape)

#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。

index1 = airline_notnull['SUM_YR_1'] != 0

index2 = airline_notnull['SUM_YR_2'] != 0

index3 = (airline_notnull['SEG_KM_SUM']> 0) & \

    (airline_notnull['avg_discount'] != 0) 

airline = airline_notnull[(index1 | index2) & index3]

print('删除异常记录后数据的形状为:',airline.shape)

选取并构建LRFMC模型的特征

## 选取需求特征

airline_selection = airline[["FFP_DATE","LOAD_TIME",

    "FLIGHT_COUNT","LAST_TO_END",

    "avg_discount","SEG_KM_SUM"]]

## 构建L特征

L = pd.to_datetime(airline_selection["LOAD_TIME"]) - \

pd.to_datetime(airline_selection["FFP_DATE"])

L = L.astype("str").str.split().str[0]

L = L.astype("int")/30

## 合并特征

airline_features = pd.concat([L, airline_selection.iloc[:,2:]],axis = 1)

print('构建的LRFMC特征前5行为:\n',airline_features.head())

标准化LRFMC模型的特征

from sklearn.preprocessing import StandardScaler

data = StandardScaler().fit_transfORM(airline_features)

np.savez('../data/airline_scale.npz',data)

print('标准化后LRFMC五个特征为:\n',data[:5,:])

以上三段代码我们归结为数据预处理,从这个阶段可以看出,其中最重要环节是“选取需求特征“,因此分析前提是要明确需求,需求调研和选取特征是我们所有工作的根本。所以我们还需懂得领域知识或由这个方面的人员或领域专家协助分析工作。标准化后,另存一份,一遍后续进行各类测试时,避免所有数据从头再来。

用某种算法,对客户数据进行客户分群,如下航空客户价值分析K-Means聚类分析代码:

客户价值分析K-Means聚类分析代码

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans #导入kmeans算法

airline_scale = np.load('../data/airline_scale.npz')['arr_0']

k = 5 ## 确定聚类中心数

#构建模型

kmeans_model = KMeans(n_clusters = k,n_jobs=4,random_state=123)

fit_kmeans = kmeans_model.fit(airline_scale)   #模型训练

kk=kmeans_model.cluster_centers_ #查看聚类中心

kmeans_model.labels_ #查看样本的类别标签

kk=kmeans_model.cluster_centers_ #查看聚类中

cc_exp = np.savetxt('../data/renwu/cc.txt',kk,fmt="%.18e")

cc.txt文件内容如下:

 [[ 0.05184321 -0.22680493 -0.00266815  2.19136467 -0.23125594]

 [-0.31368082 -0.57402062  1.68627205 -0.1733275  -0.53682451]

 [ 0.48333235  2.48322162 -0.7993897   0.30863251  2.42474345]

 [-0.7002121  -0.16114387 -0.41489162 -0.25513359 -0.16095881]

 [ 1.16067608 -0.08691922 -0.37722423 -0.15590586 -0.09484481]]

#统计不同类别样本的数目

r1 = pd.Series(kmeans_model.labels_).value_counts()

print('最终每个类别的数目为:\n',r1)

3        24659

4        15740

1        12125

2        5336

0        4184

将以上数据结合特征属性、领域知识进行分析后聚类结果如下。其中L代表入会时间,R代表最近乘机距进的时间长度,F代表飞行次数,M代表总飞行历程,C代表平均折扣系数。

 怎么用python进行客户价值分析

       从以上案例可以看出,一个数据分析案例中,数据采集和预处理按70%-80%左右工作量或时间。数据准备好了后的重点是模型和训练阶段,该阶段代码量不多但需要懂得什么算法适合什么场景,选择统计学算法还是机器学习类算法,也是考研一个数据分析是内功的阶段。选择对了合适的算法挖掘其中价值有很大的帮助。最后阶段领域知识综合应用和分析,当然领域知识的掌握或领域专家的参与贯穿到整个分析过程,回过头来还是明确分析需求是重中之重。

       在学习数据挖掘的过程中,我们也体会到算法很多,专门学习也需要较长的时间。根据个人的体会,如果不再是学生是阶段,正确学习方法也许是先明确需求,根据算法用途再确定合适的算法,接下来就只针对该算法深入学习研究并应用。

看完上述内容,你们对怎么用python进行客户价值分析有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注编程网Python频道,感谢大家的支持。

--结束END--

本文标题: 怎么用python进行客户价值分析

本文链接: https://lsjlt.com/news/229781.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 怎么用python进行客户价值分析
    今天就跟大家聊聊有关怎么用python进行客户价值分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。一个完整的数据分析项目由如下几个步骤组成:1)数据获取:分为本地文本文件、数据库链...
    99+
    2023-06-02
  • 怎么利用Python进行客户分群分析
    这篇文章主要讲解了“怎么利用Python进行客户分群分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么利用Python进行客户分群分析”吧!导入数据和python库import ...
    99+
    2023-07-05
  • 详解如何利用Python进行客户分群分析
    目录导入数据和python库分离新老客户按客户ID排序,然后是日期定义一些函数创建群组转换为群组百分比可视化每个电子商务数据分析师必须掌握的一项数据聚类技能 如果你是一名在电子商务公...
    99+
    2023-02-24
    Python实现客户分群分析 Python客户分群分析 Python客户分析
  • 怎么利用python进行数值分析
    小编给大家分享一下怎么利用python进行数值分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!一、准备噪声是在拟合过程中常用的干扰手段,常用的噪声:统一分布 U(a,b)f ( x ) = { 1 i f a ≤ x &...
    99+
    2023-06-15
  • 怎么用Python进行数据分析
    这篇文章主要讲解了“怎么用Python进行数据分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python进行数据分析”吧!评论情感倾向先调用百度AI来分析微博和b站的评论情感倾向。...
    99+
    2023-06-01
  • 教你如何利用python进行数值分析
    目录一、准备二、三次样条插值三、最小二乘拟合四、拉格朗日乘子法一、准备 噪声是在拟合过程中常用的干扰手段,常用的噪声: 1.统一分布 U(a,b) f ( x ) = { 1 i f...
    99+
    2024-04-02
  • 怎么用Python进行帕累托分析
    这篇文章主要介绍“怎么用Python进行帕累托分析”,在日常操作中,相信很多人在怎么用Python进行帕累托分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用Python进行帕累托分析”的疑惑有所帮助!...
    99+
    2023-06-15
  • 怎么使用Python进行数据分析
    使用Python进行数据分析可以通过以下几个步骤:1. 安装Python和相关库:首先需要安装Python解释器,推荐使用Anaco...
    99+
    2023-08-23
    Python
  • 怎么用Python进行系统聚类分析
    怎么用Python进行系统聚类分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。在进行机器学习时,我们往往要对数据进行聚类分析,聚类,说白了就是把相似的样品点/...
    99+
    2023-06-16
  • Python怎么使用Pandas进行数据分析
    首先,确保您已经安装了Pandas库。如果没有,请使用以下命令安装:pip install pandas一. 导入Pandas库import pandas as pd二. 读取数据使用Pandas,可以方便地读取多种数据格式,包括CSV、E...
    99+
    2023-05-16
    Python Pandas
  • 怎么使用Python进行同期群分析
    本篇内容主要讲解“怎么使用Python进行同期群分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用Python进行同期群分析”吧!同期群分析同期群分析概念同期群(Cohort)的字面意思...
    99+
    2023-07-05
  • 使用Python怎么对Syslog信息进行分析
    本篇文章给大家分享的是有关使用Python怎么对Syslog信息进行分析,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。实验目的:对设备Syslong信息进行分析记录,并写入sq...
    99+
    2023-06-14
  • 怎样用Python进行相关性分析
    今天就跟大家聊聊有关怎样用Python进行相关性分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。1.相关和因果是一回事吗相关性不等于因果。用x1和x2作为两个变量进行解释,相关意味...
    99+
    2023-06-16
  • 怎么使用Mongodb进行分析
    要使用Mongodb进行分析,需要按照以下步骤进行操作:1. 安装Mongodb数据库:首先,需要安装Mongodb数据库,并将其设...
    99+
    2023-08-23
    Mongodb
  • 怎么使用python进行区间取值
    这篇文章主要讲解了“怎么使用python进行区间取值”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用python进行区间取值”吧!需求背景:进行分值计算。如下图,如果只是一两个还好说,...
    99+
    2023-06-20
  • 使用Python进行数据分析——方差分析
    大家好,方差分析可以用来判断几组观察到的数据或者处理的结果是否存在显著差异。本文介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。 根据影...
    99+
    2023-09-12
    数据分析 数据挖掘 信息可视化 Powered by 金山文档
  • 使用SpringCloud-Hystrix-Dashboard怎么客户端服务进行监控
    本篇文章为大家展示了使用SpringCloud-Hystrix-Dashboard怎么客户端服务进行监控,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。服务监控 除了隔离依赖服务的调用以外,...
    99+
    2023-06-07
  • 怎么在Java中利用Kafka对客户端进行访问
    这篇文章给大家介绍怎么在Java中利用Kafka对客户端进行访问,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。1. maven依赖包<dependency> <groupId>org.apac...
    99+
    2023-05-31
    kafka java ava
  • Python怎么进行区间取值
    这篇文章主要介绍“Python怎么进行区间取值”,在日常操作中,相信很多人在Python怎么进行区间取值问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python怎么进行区间取值”的疑惑有所帮助!接下来,请跟...
    99+
    2023-06-20
  • 怎么进行Python正则表达式分析
    今天就跟大家聊聊有关怎么进行Python正则表达式分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。今天写爬虫偶然想到了初学正则表达式时候,看过一篇文章非常不错。检索一下还真的找到了...
    99+
    2023-06-17
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作