本篇内容介绍了“如何用Pyecharts生成云词”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!前言首先我们得先了解两个概念——上胸围 &am
本篇内容介绍了“如何用Pyecharts生成云词”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
首先我们得先了解两个概念——上胸围 & 下胸围,具体看示意图:
通过上胸围与下胸围的差值,我们就可以确定罩杯的大小了,具体的对应关系可参考下图:
有了下胸围 & 罩杯就能确定文胸对应的尺码了~
当然这又有分为英式尺码和国际尺码,具体参考下图:
from pyecharts.charts import *from pyecharts import options as optsfrom pyecharts.commons.utils import jsCodefrom collections import Counterimport reimport pandas as pdimport jiebaimport jieba.posseg as psgfrom stylecloud import gen_stylecloudfrom Ipython.display import Image
原始数据是txt格式,为了方便处理,这边转为Dataframe~
尺码部分通过正则表达式提取出对应的下胸围和罩杯,具体代码如下:
In [2]:
patterns = re.compile(r'(?P<datetime>.*),颜色分类:(?P<color>.*?);尺码:(?P<size>.*?),(?P<comment>.*)')with open('/home/kesci/input/cup6439/cup_all.txt', 'r') as f: data = f.readlines()obj_list = []for item in data: obj = patterns.search(item) obj_list.append(obj.groupdict()) data = pd.DataFrame(obj_list)data = pd.concat([data, data['size'].str.extract('(?P<circumference>[7-9]{1}[0|5]{1}).*(?P<cup>[a-zA-Z])', expand=True)], axis=1)data.head()
Out[2]:
color | comment | datetime | size | circumference | cup | |
---|---|---|---|---|---|---|
0 | 肤色薄款 | 不错给婆婆买的,准备再买两件 | 2017-04-20 13:06:04 | 38/85C | 85 | C |
1 | H007宝蓝色加粉色 | 和想象的一样好!价格实惠!拢胸效果很好穿着舒服,就是我要的是宝蓝加肤色!给发了一件粉色,也不... | 2017-04-23 21:44:20 | 34/75B | 75 | B |
2 | 超薄杯纯洁白 | 真的不错 | 2017-05-18 10:36:31 | 80C | 80 | C |
3 | 浅紫 | 一次买了两件,内衣质量不错,无钢圈设计穿上很舒服也很有型,值得购买。 | 2017-04-19 20:44:51 | 36B=80B | 80 | B |
4 | 卡其色 | 因为手机号填错了结果直接被退件了_(:_」∠)_但是卖家还是超好心地给我重新送了回来qwq | 2017-05-07 09:16:47 | 75A | 75 | A |
我们通过jieba
分词来看看商品分类中最常出现的是哪些关键词~
颜色:肤色 > 黑色 > 粉色 > 白色;
薄款 > 厚款;
钢圈似乎是个比较重要的卖点;
In [3]:
w_all = []for item in data.color: w_l = psg.cut(item) w_l = [w for w, f in w_l if f in ('n', 'nr') and len(w)>1] w_all.extend(w_l)c = Counter(w_all)
Building prefix dict from the default dictionary ...Dumping model to file cache /tmp/jieba.cacheLoading model cost 0.769 seconds.Prefix dict has been built succesfully.
In [4]:
counter = c.most_common(50)bar = (Bar(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='800px')) .add_xaxis([x for x, y in counter[::-1]]) .add_yaxis('出现次数', [y for x, y in counter[::-1]], cateGory_gap='30%') .set_global_opts(title_opts=opts.TitleOpts(title="出现最多的关键词", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(font_size=20)), datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient='vertical'), visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6e4, min_=3000, dimension=0, range_color=['#f5d69f', '#f5898b', '#ef5055']), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(is_show=False,), yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False), axisline_opts=opts.AxisLineOpts(is_show=False))) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='right', font_style='italic'), itemstyle_opts={"nORMal": { "barBorderRadius": [30, 30, 30, 30], 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, } }).reversal_axis())bar.render_notebook()
Out[4]:
In [5]:
t_data = data.groupby(['circumference', 'cup'])['datetime'].count().reset_index()t_data.columns = ['circumference', 'cup', 'num']#t_data.num = round(t_data.num.div(t_data.num.sum(axis=0), axis=0) * 100, 1)data_pair = [ {"name": 'A', "label":{"show": True}, "children": []}, {"name": 'B', "label":{"show": True}, "children": []}, {"name": 'C', "label":{"show": True}, 'shadowBlur': 10, 'shadowColor': 'rgba(120, 36, 50, 0.5)', 'shadowOffsetY': 5, "children": []}, {"name": 'D', "label":{"show": False}, "children": []}, {"name": 'E', "label":{"show": False}, "children": []} ]for idx, row in t_data.iterrows(): t_dict = {"name": row.cup, "label":{"show": True}, "children": []} if row.num > 3000: child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": True}} else: child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": False}} if row.cup == "A": data_pair[0]['children'].append(child_data) elif row.cup == "B": data_pair[1]['children'].append(child_data) elif row.cup == "C": data_pair[2]['children'].append(child_data) elif row.cup == "D": data_pair[3]['children'].append(child_data) elif row.cup == "E": data_pair[4]['children'].append(child_data)
单看罩杯的话:B > A > C
细分到具体尺码:75B > 80B > 75A > 70A
In [6]:
c = (Sunburst( init_opts=opts.InitOpts( theme='purple-passion', width="1000px", height="1000px")) .add( "", data_pair=data_pair, highlight_policy="ancestor", radius=[0, "100%"], sort_='null', levels=[ {}, { "r0": "20%", "r": "48%", "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 2} }, {"r0": "50%", "r": "80%", "label": {"align": "right"}, "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 1}} ], ) .set_global_opts( visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90000, min_=3000, range_color=['#f5d69f', '#f5898b', '#ef5055']), title_opts=opts.TitleOpts(title="文 胸\n\n尺 码 分 布", pos_left="center", pos_top="center", title_textstyle_opts=opts.TextStyleOpts(font_style='oblique', font_size=30),)) .set_series_opts(label_opts=opts.LabelOpts(font_size=18, formatter="{b}: {c}")))c.render_notebook()
Out[6]:
我们通过不同的胸围来看看罩杯的比例:
下胸围=70:A > B > C
下胸围=75:B > A > C
下胸围=80:B > A > C
下胸围=85:B > C > A
下胸围=90:C > B > A
下胸围=95:C > B > D
In [7]:
grid = Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1000px'))for idx, c in enumerate(['70', '75', '80', '85', '90', '95']): if idx % 2 == 0: x = 30 y = int(idx/2) * 30 + 20 else: x = 70 y = int(idx/2) * 30 + 20 pos_x = str(x)+'%' pos_y = str(y)+'%' pie = Pie(init_opts=opts.InitOpts()) pie.add( c, [[row.cup, row.num]for i, row in t_data[t_data.circumference==c].iterrows()], center=[pos_x, pos_y], radius=[70, 100], label_opts=opts.LabelOpts(formatter='{b}:{d}%'), ) pie.set_global_opts( title_opts=opts.TitleOpts(title="下胸围={}".format(c), pos_top=str(y-1)+'%', pos_left=str(x-4)+'%', title_textstyle_opts=opts.TextStyleOpts(font_size=15)), legend_opts=opts.LegendOpts(is_show=True)) grid.add(pie,grid_opts=opts.GridOpts(pos_left='20%'))grid.render_notebook()
Out[7]:
最后我们来看看评论中经常说到的是什么词语吧~
In [8]:
w_all = []for item in data.comment: w_l = jieba.lcut(item) w_all.extend(w_l)c = Counter(w_all)
In [10]:
gen_stylecloud(' '.join(w_all), size=1000, #max_Words=1000, font_path='/home/kesci/work/font/simhei.ttf', #palette='palettable.tableau.TableauMedium_10', icon_name='fas fa-heartbeat', output_name='comment.png', custom_stopwords=['没有','用户','填写','评论'] )Image(filename='comment.png')
Out[10]:
“如何用Pyecharts生成云词”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!
--结束END--
本文标题: 如何用Pyecharts生成云词
本文链接: https://lsjlt.com/news/228079.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0