返回顶部
首页 > 资讯 > 后端开发 > Python >python查找与排序算法实例代码分析
  • 579
分享到

python查找与排序算法实例代码分析

Python 2023-05-17 08:05:20 579人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

查找二分查找二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从

    查找

    二分查找

    二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。

    python查找与排序算法实例代码分析

    # 返回 x 在 arr 中的索引,如果不存在返回 -1
    def binarySearch (arr, l, r, x):
        # 基本判断
        if r >= l:
            mid = int(l + (r - l)/2)
            # 元素整好的中间位置
            if arr[mid] == x:
                return mid
            # 元素小于中间位置的元素,只需要再比较左边的元素
            elif arr[mid] > x:
                return binarySearch(arr, l, mid-1, x)
            # 元素大于中间位置的元素,只需要再比较右边的元素
            else:
                return binarySearch(arr, mid+1, r, x)
        else:
            # 不存在
            return -1
     
    # 测试数组
    arr = [ 2, 3, 4, 10, 40]
    x = int(input('请输入元素:'))
    # 函数调用
    result = binarySearch(arr, 0, len(arr)-1, x)
     
    if result != -1:
        print("元素在数组中的索引为 %d" % result)
    else:
        print("元素不在数组中")

    运行结果:

    请输入元素:4
    元素在数组中的索引为 2

    请输入元素:5
    元素不在数组中

    线性查找

    线性查找:指按一定的顺序检查数组中每一个元素,直到找到所要寻找的特定值为止。

    def search(arr, n, x):
        for i in range (0, n):
            if (arr[i] == x):
                return i
        return -1
     
    # 在数组 arr 中查找字符 D
    arr = [ 'A', 'B', 'C', 'D', 'E' ]
    x = input("请输入要查找的元素:")
    n = len(arr)
    result = search(arr, n, x)
    if(result == -1):
        print("元素不在数组中")
    else:
        print("元素在数组中的索引为", result)

    运行结果:

    请输入要查找的元素:A
    元素在数组中的索引为 0

    请输入要查找的元素:a
    元素不在数组中

    排序

    插入排序

    插入排序(Insertion Sort):是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    python查找与排序算法实例代码分析

    def insertionSort(arr):
        for i in range(1, len(arr)):
            key = arr[i]
            j = i-1
            while j >= 0 and key < arr[j]:
                    arr[j+1] = arr[j]
                    j -= 1
            arr[j+1] = key
     
    arr = [12, 11, 13, 5, 6, 7, 9, 9, 17]
    insertionSort(arr)
    print("排序后的数组:")
    print(arr)

    运行结果:

    排序后的数组:
    [5, 6, 7, 9, 9, 11, 12, 13, 17]

    当然也可以这样写,更简洁

    list1 = [12, 11, 13, 5, 6, 7, 9, 9, 17]
    for i in range(len(list1)-1, 0, -1):
        for j in range(0, i):
            if list1[i] < list1[j]:
                list1[i], list1[j] = list1[j], list1[i]
    print(list1)

    快速排序

    快速排序;使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。

    步骤为:

    • 挑选基准值:从数列中挑出一个元素,称为"基准"(pivot);

    • 分割:重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(与基准值相等的数可以到任何一边)。在这个分割结束之后,对基准值的排序就已经完成;

    • 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。

    递归到最底部的判断条件是数列的大小是零或一,此时该数列显然已经有序。

    选取基准值有数种具体方法,此选取方法对排序的时间性能有决定性影响。

    python查找与排序算法实例代码分析

    def partition(arr, low, high):
        i = (low-1)         # 最小元素索引
        pivot = arr[high]
     
        for j in range(low, high):
            # 当前元素小于或等于 pivot
            if arr[j] <= pivot:
                i = i+1
                arr[i], arr[j] = arr[j], arr[i]
     
        arr[i+1], arr[high] = arr[high], arr[i+1]
        return (i+1)
     
    # arr[] --> 排序数组
    # low  --> 起始索引
    # high  --> 结束索引
     
    # 快速排序函数
    def quickSort(arr, low, high):
        if low < high:
            pi = partition(arr, low, high)
            quickSort(arr, low, pi-1)
            quickSort(arr, pi+1, high)
        return arr
     
    arr = [10, 7, 8, 9, 1, 5]
    n = len(arr)
     
    print("排序后的数组:")
    print(quickSort(arr, 0, n-1))

    运行结果:

    排序后的数组:
    [1, 5, 7, 8, 9, 10]

    选择排序

    选择排序(Selection sort):是一种简单直观的排序算法。它的工作原理如下。

    首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

    python查找与排序算法实例代码分析

    A = [64, 25, 12, 22, 11]
    for i in range(len(A)): 
        min_idx = i
        for j in range(i+1, len(A)):
            if A[min_idx] > A[j]:
                min_idx = j
     
        A[i], A[min_idx] = A[min_idx], A[i]
     
    print("排序后的数组:")
    print(A)

    运行结果:

    排序后的数组:
    [11, 12, 22, 25, 64]

    冒泡排序

    冒泡排序(Bubble Sort):也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

    python查找与排序算法实例代码分析

    def bubbleSort(arr):
        n = len(arr)
        # 遍历所有数组元素
        for i in range(n):
            # Last i elements are already in place
            for j in range(0, n-i-1):
     
                if arr[j] > arr[j+1]:
                    arr[j], arr[j+1] = arr[j+1], arr[j]
        return arr
     
    arr = [64, 34, 25, 12, 22, 11, 90]
     
    print("排序后的数组:")
    print(bubbleSort(arr))

    运行结果:

    排序后的数组:
    [11, 12, 22, 25, 34, 64, 90]

    归并排序

    归并排序(Merge sort,或mergesort):,是创建在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

    分治法:

    • 分割:递归地把当前序列平均分割成两半。

    • 集成:在保持元素顺序的同时将上一步得到的子序列集成到一起(归并)。

    python查找与排序算法实例代码分析

    def merge(arr, l, m, r):
        n1 = m - l + 1
        n2 = r - m
     
        # 创建临时数组
        L = [0] * (n1)
        R = [0] * (n2)
     
        # 拷贝数据到临时数组 arrays L[] 和 R[]
        for i in range(0, n1):
            L[i] = arr[l + i]
     
        for j in range(0, n2):
            R[j] = arr[m + 1 + j]
     
        # 归并临时数组到 arr[l..r]
        i = 0     # 初始化第一个子数组的索引
        j = 0     # 初始化第二个子数组的索引
        k = l     # 初始归并子数组的索引
     
        while i < n1 and j < n2:
            if L[i] <= R[j]:
                arr[k] = L[i]
                i += 1
            else:
                arr[k] = R[j]
                j += 1
            k += 1
     
        # 拷贝 L[] 的保留元素
        while i < n1:
            arr[k] = L[i]
            i += 1
            k += 1
     
        # 拷贝 R[] 的保留元素
        while j < n2:
            arr[k] = R[j]
            j += 1
            k += 1
     
    def mergeSort(arr, l, r):
        if l < r:
            m = int((l+(r-1))/2)
            mergeSort(arr, l, m)
            mergeSort(arr, m+1, r)
            merge(arr, l, m, r)
        return arr
     
    print ("给定的数组")
    arr = [12, 11, 13, 5, 6, 7, 13]
    print(arr)
    n = len(arr)
    mergeSort(arr, 0, n-1)
    print("排序后的数组")
    print(arr)

    运行结果:

    给定的数组
    [12, 11, 13, 5, 6, 7, 13]
    排序后的数组
    [5, 6, 7, 11, 12, 13, 13]

    堆排序

    堆排序(Heapsort):是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。

    python查找与排序算法实例代码分析

    def heapify(arr, n, i):
        largest = i
        l = 2 * i + 1     # left = 2*i + 1
        r = 2 * i + 2     # right = 2*i + 2
        if l < n and arr[i] < arr[l]:
            largest = l
        if r < n and arr[largest] < arr[r]:
            largest = r
        if largest != i:
            arr[i], arr[largest] = arr[largest], arr[i]  # 交换
    def heapSort(arr):
        n = len(arr)
        # Build a maxheap.
        for i in range(n, -1, -1):
            heapify(arr, n, i)
        # 一个个交换元素
        for i in range(n-1, 0, -1):
            arr[i], arr[0] = arr[0], arr[i]   # 交换
            heapify(arr, i, 0)
        return arr
    arr = [12, 11, 13, 5, 6, 7, 13, 18]
    heapSort(arr)
    print("排序后的数组")
    print(heapSort(arr))

    运行结果:

    排序后的数组
    [5, 6, 7, 12, 11, 13, 13, 18]

    计数排序

    计数排序:的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

    python查找与排序算法实例代码分析

    def countSort(arr):
        output = [0 for i in range(256)]
        count = [0 for i in range(256)]
        ans = ["" for _ in arr]
        for i in arr:
            count[ord(i)] += 1
        for i in range(256):
            count[i] += count[i-1] 
        for i in range(len(arr)):
            output[count[ord(arr[i])]-1] = arr[i]
            count[ord(arr[i])] -= 1
        for i in range(len(arr)):
            ans[i] = output[i]
        return ans
    arr = "wwwnowcodercom"
    ans = countSort(arr)
    print("字符数组排序 %s" %("".join(ans)))

    运行结果:

    字符数组排序 ccdemnooorwwww

    希尔排序

    希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

    希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。

    python查找与排序算法实例代码分析

    def shellSort(arr):
        n = len(arr)
        gap = int(n/2)
     
        while gap > 0:
            for i in range(gap, n):
                temp = arr[i]
                j = i
                while j >= gap and arr[j-gap] > temp:
                    arr[j] = arr[j-gap]
                    j -= gap
                arr[j] = temp
            gap = int(gap/2)
        return arr
     
    arr = [12, 34, 54, 2, 3, 2, 5]
     
    print("排序前:")
    print(arr)
    print("排序后:")
    print(shellSort(arr))

    运行结果:

    排序前:
    [12, 34, 54, 2, 3, 2, 5]
    排序后:
    [2, 2, 3, 5, 12, 34, 54]

    拓扑排序

    对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)&isin;E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。拓扑排序是一种将集合上的偏序转换为全序的操作。

    在图论中,由一个有向无环图的顶点组成的序列,当且仅当满足下列条件时,称为该图的一个拓扑排序(英语:Topological sorting):

    每个顶点出现且只出现一次;若A在序列中排在B的前面,则在图中不存在从B到A的路径。

    python查找与排序算法实例代码分析

    from collections import defaultdict
    class Graph:
        def __init__(self, vertices):
            self.graph = defaultdict(list)
            self.V = vertices
        def addEdge(self, u, v):
            self.graph[u].append(v)
        def topologicalSortUtil(self, v, visited, stack):
     
            visited[v] = True
     
            for i in self.graph[v]:
                if visited[i] == False:
                    self.topologicalSortUtil(i, visited, stack)
            stack.insert(0,v)
        def topologicalSort(self):
            visited = [False]*self.V
            stack = []
            for i in range(self.V):
                if visited[i] == False:
                    self.topologicalSortUtil(i, visited, stack)
            print(stack)
    g= Graph(6)
    g.addEdge(5, 2)
    g.addEdge(5, 0)
    g.addEdge(4, 0)
    g.addEdge(4, 1)
    g.addEdge(2, 3)
    g.addEdge(3, 1)
    print("拓扑排序结果:")
    g.topologicalSort()

    运行结果:

    拓扑排序结果:
    [5, 4, 2, 3, 1, 0]

    以上就是python查找与排序算法实例代码分析的详细内容,更多请关注编程网其它相关文章!

    --结束END--

    本文标题: python查找与排序算法实例代码分析

    本文链接: https://lsjlt.com/news/210805.html(转载时请注明来源链接)

    有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

    猜你喜欢
    • python查找与排序算法实例代码分析
      查找二分查找二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从...
      99+
      2023-05-17
      Python
    • python查找与排序算法详解(示图+代码)
      目录查找二分查找线性查找排序 插入排序快速排序选择排序冒泡排序归并排序堆排序计数排序希尔排序拓扑排序总结查找 二分查找 二分搜索是一种在有序数组中查找某一特定元素的搜索算法...
      99+
      2024-04-02
    • python二分法查找实例代码
      对于要搜索的元素越多,二分查找速度比简单查找快的更多 这是二分查找算法的优点,但二分算法也有缺点,二分算法只针对有序的列表,这样插入和删除就会很困难,因此,折半查找方法只适合不经常变...
      99+
      2024-04-02
    • Python快速排序算法实例分析
      本文实例讲述了Python快速排序算法。分享给大家供大家参考,具体如下: 快速排序的时间复杂度是O(NlogN) 算法描述: ① 先从序列中取出一个数作为基准数 ② 分区过程, 将比这个数大的数全部放到它的...
      99+
      2022-06-04
      算法 实例 快速
    • Python中使用插入排序算法的简单分析与代码示例
      问题描述 将一组随机排列的数字重新按照从小到大的顺序排列。 插入算法 每次从数组中取一个数字,与现有数字比较并插入适当位置。 如此重复,每次均可以保持现有数字按照顺序排列,直到数字取完,即排序成功。 这很像...
      99+
      2022-06-04
      示例 算法 代码
    • Python实现的堆排序算法原理与用法实例分析
      本文实例讲述了Python实现的堆排序算法。分享给大家供大家参考,具体如下: 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的...
      99+
      2022-06-04
      算法 实例 原理
    • Python实现的选择排序算法原理与用法实例分析
      本文实例讲述了Python实现的选择排序算法。分享给大家供大家参考,具体如下: 选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的...
      99+
      2022-06-04
      算法 实例 原理
    • Python实现的插入排序算法原理与用法实例分析
      本文实例讲述了Python实现的插入排序算法原理与用法。分享给大家供大家参考,具体如下: 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数...
      99+
      2022-06-04
      算法 实例 原理
    • Python实现的基数排序算法原理与用法实例分析
      本文实例讲述了Python实现的基数排序算法。分享给大家供大家参考,具体如下: 基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sor...
      99+
      2022-06-04
      基数 算法 实例
    • Python实现希尔排序算法的原理与用法实例分析
      本文实例讲述了Python实现希尔排序算法的原理与用法。分享给大家供大家参考,具体如下: 希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。 希尔...
      99+
      2022-06-04
      希尔 算法 实例
    • 三路排序算法(Java 实例代码)
      目录   三路排序算法 一、概念及其介绍 二、适用说明 四、Java 实例代码 QuickSort3Ways.java 文件代码:   三路排序算法 一、概念及其介绍 三路快速排序是双路快速排序的进一步改进版本,三路排序算法把排序的数据分...
      99+
      2023-09-01
      排序算法 算法 java
    • Python实现七大查找算法的示例代码
      目录查找算法 -- 简介顺序查找二分查找插值查找斐波那契查找树表查找1、二叉树查找算法。2、平衡查找树之2-3查找树(2-3 Tree)3、平衡查找树之红黑树(Red-Black T...
      99+
      2024-04-02
    • C语言排序算法实例分析
      这篇文章主要讲解了“C语言排序算法实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C语言排序算法实例分析”吧!1、直接插入排序基本思想:当插入第i(i>=1)个元素时,前面的ar...
      99+
      2023-06-29
    • python二分查找算法代码怎么写
      下面是一个示例的Python二分查找算法代码: def binary_search(arr, target): left =...
      99+
      2023-10-22
      python
    • Java实现查找算法的示例代码(二分查找、插值查找、斐波那契查找)
      目录1.查找概述2.顺序查找3.二分查找3.1 二分查找概述3.2 二分查找实现4.插值查找4.1 插值查找概述4.2 插值查找实现5.斐波那契查找5.1 斐波那契查找概述5.2 斐...
      99+
      2024-04-02
    • Java的Arrays.sort()方法排序算法实例分析
        暂时网上看过很多JDK8中Arrays.sort的底层原理,有些说是插入排序,有些说是归并排序,也有说大于域值用计数排序法,否则就使用插入排序。。。其实不全对。让我们分析个究竟:...
      99+
      2024-04-02
    • python实现折半查找和归并排序算法
      今天依旧是学算法,前几天在搞bbs项目,界面也很丑,评论功能好像也有BUG。现在不搞了,得学下算法和数据结构,笔试过不了,连面试的机会都没有…… 今天学了折半查找算法,折半查找是蛮简单的,但是归并排序我就挺...
      99+
      2022-06-04
      算法 python
    • PHP算法题实例代码分析
      本篇内容主要讲解“PHP算法题实例代码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PHP算法题实例代码分析”吧!题目给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 ...
      99+
      2023-07-05
    • python二分查找算法的代码怎么写
      以下是一个简单的二分查找算法的Python代码实现: def binary_search(arr, target): lef...
      99+
      2023-10-26
      python
    • java排序算法的示例分析
      这篇文章将为大家详细讲解有关java排序算法的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、直接插入排序基本思想:将一个记录插入到已排序的有序表中,使插入后的表仍然有序对初始关键字{49 38...
      99+
      2023-06-20
    软考高级职称资格查询
    编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
    • 官方手机版

    • 微信公众号

    • 商务合作