Python 官方文档:入门教程 => 点击学习
什么是损失函数?损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss
损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。
一些损失函数也可以被用作评价指标。但是损失函数和度量指标(metrics)有不同的目的。虽然度量指标用于评估最终模型并比较不同模型的性能,但损失函数在模型构建阶段用作正在创建的模型的优化器。损失函数指导模型如何最小化误差。
也就是说损失函数是知道模型如何训练的,而度量指标是说明模型的表现的。
由于损失函数测量的是预测值和实际值之间的差距,因此在训练模型时可以使用它们来指导模型的改进(通常的梯度下降法)。在构建模型的过程中,如果特征的权重发生了变化得到了更好或更差的预测,就需要利用损失函数来判断模型中特征的权重是否需要改变,以及改变的方向。
我们可以在机器学习中使用各种各样的损失函数,这取决于我们试图解决的问题的类型、数据质量和分布以及我们使用的算法,下图为我们整理的10个常见的损失函数:
均方误差是指所有预测值和真实值之间的平方差,并将其平均值。常用于回归问题。
def MSE (y, y_predicted):sq_error = (y_predicted - y) ** 2sum_sq_error = np.sum(sq_error)mse = sum_sq_error/y.sizereturn mse
作为预测值和真实值之间的绝对差的平均值来计算的。当数据有异常值时,这是比均方误差更好的测量方法。
def MAE (y, y_predicted):error = y_predicted - yabsolute_error = np.absolute(error)total_absolute_error = np.sum(absolute_error)mae = total_absolute_error/y.sizereturn mae
这个损失函数是均方误差的平方根。如果我们不想惩罚更大的错误,这是一个理想的方法。
def RMSE (y, y_predicted):sq_error = (y_predicted - y) ** 2total_sq_error = np.sum(sq_error)mse = total_sq_error/y.sizermse = math.sqrt(mse)return rmse
类似于平均绝对误差但不求绝对值。这个损失函数的缺点是负误差和正误差可以相互抵消,所以当研究人员知道误差只有一个方向时,应用它会更好。
def MBE (y, y_predicted):error = y_predicted - ytotal_error = np.sum(error)mbe = total_error/y.sizereturn mbe
Huber损失函数结合了平均绝对误差(MAE)和均方误差(MSE)的优点。这是因为Hubber损失是一个有两个分支的函数。一个分支应用于符合期望值的MAE,另一个分支应用于异常值。Hubber Loss一般函数为:
这里的
def hubber_loss (y, y_predicted, delta)delta = 1.35 * MAEy_size = y.sizetotal_error = 0for i in range (y_size):erro = np.absolute(y_predicted[i] - y[i])if error < delta:hubber_error = (error * error) / 2else:hubber_error = (delta * error) / (0.5 * (delta * delta))total_error += hubber_errortotal_hubber_error = total_error/y.sizereturn total_hubber_error
该损失函数主要用于二值分类问题。将每一个预测值的概率相乘,得到一个损失值,相关的代价函数是所有观测值的平均值。让我们用以下二元分类的示例为例,其中类别为[0]或[1]。如果输出概率等于或大于0.5,则预测类为[1],否则为[0]。输出概率的示例如下:
[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]
对应的预测类为:
[0 , 1 , 1 , 1 , 1 , 0]
而实际的类为:
[0 , 1 , 1 , 0 , 1 , 0]
现在将使用真实的类和输出概率来计算损失。如果真类是[1],我们使用输出概率,如果真类是[0],我们使用1-概率:
((1–0.3)+0.7+0.8+(1–0.5)+0.6+(1–0.4)) / 6 = 0.65
python代码如下:
def LHL (y, y_predicted):likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))total_likelihood_loss = np.sum(likelihood_loss)lhl = - total_likelihood_loss / y.sizereturn lhl
这个函数是对数的似然损失的修正。对数列的叠加可以惩罚那些非常自信但是却错误的预测。二元交叉熵损失函数的一般公式为:
— (y . log (p) + (1 — y) . log (1 — p))
让我们继续使用上面例子的值:
输出概率= [0.3、0.7、0.8、0.5、0.6、0.4]
实际的类= [0,1,1,0,1,0]
— (0 . log (0.3) + (1–0) . log (1–0.3)) = 0.155
— (1 . log(0.7) + (1–1) . log (0.3)) = 0.155
— (1 . log(0.8) + (1–1) . log (0.2)) = 0.097
— (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301
— (1 . log(0.6) + (1–1) . log (0.4)) = 0.222
— (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222
那么代价函数的结果为:
(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192
Python的代码如下:
def BCE (y, y_predicted):ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))total_ce = np.sum(ce_loss)bce = - total_ce/y.sizereturn bce
Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。
Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。 所以一般损失函数是:
l(y) = max (0 , 1 — t . y)
这里的t是真实结果用[1]或[-1]表示。
使用Hinge Loss的类应该是[1]或[-1](不是[0])。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。
如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:
如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。
loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0
如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。
loss = max (0 , 1–(-1) * 0) = max (0 , 1) = 1
如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。
loss = max (0 , 1 — (-1) . 2) = max (0 , 1+2) = max (0 , 3) = 3
python代码如下:
#Hinge Lossdef Hinge (y, y_predicted):hinge_loss = np.sum(max(0 , 1 - (y_predicted * y)))return hinge_loss#Squared Hinge Lossdef SqHinge (y, y_predicted):sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2total_sq_hinge_loss = np.sum(sq_hinge_loss)return total_sq_hinge_loss
在多分类中,我们使用与二元交叉熵类似的公式,但有一个额外的步骤。首先需要计算每一对[y, y_predicted]的损失,一般公式为:
如果我们有三个类,其中单个[y, y_predicted]对的输出是:
这里实际的类3(也就是值=1的部分),我们的模型对真正的类是3的信任度是0.7。计算这损失如下:
Loss = 0 . log (0.1) + 0 . log (0.2) + 1 . log (0.7) = -0.155
为了得到代价函数的值,我们需要计算所有单个配对的损失,然后将它们相加最后乘以[-1/样本数量]。代价函数由下式给出:
使用上面的例子,如果我们的第二对:
Loss = 0 . log (0.4) + 1. log (0.4) + 0. log (0.2) = -0.40
那么成本函数计算如下:
使用Python的代码示例可以更容易理解:
def CCE (y, y_predicted):cce_class = y * (np.log(y_predicted))sum_totalpair_cce = np.sum(cce_class)cce = - sum_totalpair_cce / y.sizereturn cce
又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。 如果我们的类不平衡,它特别有用。
def KL (y, y_predicted):kl = y * (np.log(y / y_predicted))total_kl = np.sum(kl)return total_kl
以上就是常见的10个损失函数,希望对你有所帮助。
以上就是十个常用的损失函数解释以及Python代码实现的详细内容,更多请关注编程网其它相关文章!
--结束END--
本文标题: 十个常用的损失函数解释以及Python代码实现
本文链接: https://lsjlt.com/news/205617.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0