返回顶部
首页 > 资讯 > 后端开发 > Python >Python实现12种降维算法
  • 720
分享到

Python实现12种降维算法

算法Python降维 2023-05-14 21:05:22 720人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

大家好,我是Peter~网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并

大家好,我是Peter~

网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。

为什么要进行数据降维?

所谓降维,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d

通常,我们会发现大部分数据集的维度都会高达成百乃至上千,而经典的 MNIST,其维度都是 64。

Python实现12种降维算法

MNIST 手写数字数据集

但在实际应用中,我们所用到的有用信息却并不需要那么高的维度,而且每增加一维所需的样本个数呈指数级增长,这可能会直接带来极大的「维数灾难」;而数据降维就可以实现:

  • 使得数据集更易使用
  • 确保变量之间彼此独立
  • 降低算法计算运算成本

去除噪音一旦我们能够正确处理这些信息,正确有效地进行降维,这将大大有助于减少计算量,进而提高机器运作效率。而数据降维,也常应用于文本处理、人脸识别、图片识别、自然语言处理等领域。

数据降维原理

往往高维空间的数据会出现分布稀疏的情况,所以在降维处理的过程中,我们通常会做一些数据删减,这些数据包括了冗余的数据、无效信息、重复表达内容等。

例如:现有一张 1024*1024 的图,除去中心 50*50 的区域其它位置均为零值,这些为零的信息就可以归为无用信息;而对于对称图形而言,对称部分的信息则可以归为重复信息。

因此,大部分经典降维技术也是基于这一内容而展开,其中降维方法又分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。

  • 线性降维方法:PCA 、ICA LDA、LFA、LPP(LE 的线性表示)
  • 非线性降维方法:

基于核函数的非线性降维方法——KPCA 、KICA、KDA

基于特征值的非线性降维方法(流型学习)——ISOMAP、LLE、LE、LPP、LTSA、MVU

哈尔滨工业大学计算机技术专业的在读硕士生 Heucoder 则整理了 PCA、KPCA、LDA、MDS、ISOMAP、LLE、TSNE、AutoEncoder、FastICA、SVD、LE、LPP 共 12 种经典的降维算法,并提供了相关资料、代码以及展示,下面将主要以 PCA 算法为例介绍降维算法具体操作。

主成分分析(PCA)降维算法

PCA 是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督降维算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,属于线性降维方法。与 PCA 相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。

Python实现12种降维算法

最大方差理论降维原理

将一组 N 维向量降为 K 维(K 大于 0,小于 N),其目标是选择 K 个单位正交基,各字段两两间 COV(X,Y) 为 0,而字段的方差则尽可能大。因此,最大方差即使得投影数据的方差被最大化,在这过程中,我们需要找到数据集 Xmxn 的最佳的投影空间 Wnxk、协方差矩阵等,其算法流程为:

  • 算法输入:数据集 Xmxn;
  • 按列计算数据集 X 的均值 Xmean,然后令 Xnew=X−Xmean;
  • 求解矩阵 Xnew 的协方差矩阵,并将其记为 Cov;
  • 计算协方差矩阵 COV 的特征值和相应的特征向量;
  • 将特征值按照从大到小的排序,选择其中最大的 k 个,然后将其对应的 k 个特征向量分别作为列向量组成特征向量矩阵 Wnxk;
  • 计算 XnewW,即将数据集 Xnew 投影到选取的特征向量上,这样就得到了我们需要的已经降维的数据集 XnewW。

Python实现12种降维算法

最小误差理论降维原理

而最小误差则是使得平均投影代价最小的线性投影,这一过程中,我们则需要找到的是平方错误评价函数 J0(x0) 等参数。

  • 主成分分析(PCA)代码实现

Python实现12种降维算法

关于 PCA 算法的代码如下:

from __future__ import print_function
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
import numpy as np
%matplotlib inline

def shuffle_data(X, y, seed=None):
 if seed:
 np.random.seed(seed)

 idx = np.arange(X.shape[0])
 np.random.shuffle(idx)

 return X[idx], y[idx]

# 正规化数据集 X
def nORMalize(X, axis=-1, p=2):
 lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
 lp_norm[lp_norm == 0] = 1
 return X / np.expand_dims(lp_norm, axis)

# 标准化数据集 X
def standardize(X):
 X_std = np.zeros(X.shape)
 mean = X.mean(axis=0)
 std = X.std(axis=0)

 # 做除法运算时请永远记住分母不能等于 0 的情形
 # X_std = (X - X.mean(axis=0)) / X.std(axis=0)
 for col in range(np.shape(X)[1]):
 if std[col]:
 X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
 return X_std

# 划分数据集为训练集和测试集
def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
 if shuffle:
 X, y = shuffle_data(X, y, seed)
 n_train_samples = int(X.shape[0] * (1-test_size))
 x_train, x_test = X[:n_train_samples], X[n_train_samples:]
 y_train, y_test = y[:n_train_samples], y[n_train_samples:]

 return x_train, x_test, y_train, y_test

# 计算矩阵 X 的协方差矩阵
def calculate_covariance_matrix(X, Y=np.empty((0,0))):
 if not Y.any():
Y = X
 n_samples = np.shape(X)[0]
 covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
 return np.array(covariance_matrix, dtype=float)

# 计算数据集 X 每列的方差
def calculate_variance(X):
 n_samples = np.shape(X)[0]
 variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
 return variance

# 计算数据集 X 每列的标准差
def calculate_std_dev(X):
 std_dev = np.sqrt(calculate_variance(X))
 return std_dev

# 计算相关系数矩阵
def calculate_correlation_matrix(X, Y=np.empty([0])):
 # 先计算协方差矩阵
 covariance_matrix = calculate_covariance_matrix(X, Y)
 # 计算 X, Y 的标准差
 std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
 std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
 correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))

 return np.array(correlation_matrix, dtype=float)

class PCA():
 """
 主成份分析算法 PCA,非监督学习算法.
 """
 def __init__(self):
 self.eigen_values = None
 self.eigen_vectors = None
 self.k = 2

 def transform(self, X):
 """
 将原始数据集 X 通过 PCA 进行降维
 """
 covariance = calculate_covariance_matrix(X)

 # 求解特征值和特征向量
 self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)

 # 将特征值从大到小进行排序,注意特征向量是按列排的,即 self.eigen_vectors 第 k 列是 self.eigen_values 中第 k 个特征值对应的特征向量
 idx = self.eigen_values.argsort()[::-1]
 eigenvalues = self.eigen_values[idx][:self.k]
 eigenvectors = self.eigen_vectors[:, idx][:, :self.k]

 # 将原始数据集 X 映射到低维空间
 X_transformed = X.dot(eigenvectors)

 return X_transformed

def main():
 # Load the dataset
 data = datasets.load_iris()
 X = data.data
 y = data.target

 # 将数据集 X 映射到低维空间
 X_trans = PCA().transform(X)

 x1 = X_trans[:, 0]
 x2 = X_trans[:, 1]

 cmap = plt.get_cmap('viridis')
 colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]

 class_distr = []
 # Plot the different class distributions
 for i, l in enumerate(np.unique(y)):
 _x1 = x1[y == l]
 _x2 = x2[y == l]
 _y = y[y == l]
 class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))

 # Add a legend
 plt.legend(class_distr, y, loc=1)

 # Axis labels
 plt.xlabel('Principal Component 1')
 plt.ylabel('Principal Component 2')
 plt.show()

if __name__ == "__main__":
 main()

最终,我们将得到降维结果如下。其中,如果得到当特征数 (D) 远大于样本数 (N) 时,可以使用一点小技巧实现 PCA 算法的复杂度转换。

Python实现12种降维算法

PCA 降维算法展示

当然,这一算法虽然经典且较为常用,其不足之处也非常明显。它可以很好的解除线性相关,但是面对高阶相关性时,效果则较差;同时,PCA 实现的前提是假设数据各主特征是分布在正交方向上,因此对于在非正交方向上存在几个方差较大的方向,PCA 的效果也会大打折扣。

其它降维算法及代码地址

  • KPCA(kernel PCA)

KPCA 是核技术与 PCA 结合的产物,它与 PCA 主要差别在于计算协方差矩阵时使用了核函数,即是经过核函数映射之后的协方差矩阵。

引入核函数可以很好的解决非线性数据映射问题。kPCA 可以将非线性数据映射到高维空间,在高维空间下使用标准 PCA 将其映射到另一个低维空间。

Python实现12种降维算法

KPCA 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/blob/master/codes/PCA/KPCA.py

  • LDA(Linear Discriminant Analysis)

LDA 是一种可作为特征抽取的技术,其目标是向最大化类间差异,最小化类内差异的方向投影,以利于分类等任务即将不同类的样本有效的分开。LDA 可以提高数据分析过程中的计算效率,对于未能正则化的模型,可以降低维度灾难带来的过拟合。

Python实现12种降维算法

LDA 降维算法展示

代码地址:

Https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LDA

  • MDS(multidimensional scaling)

MDS 即多维标度分析,它是一种通过直观空间图表示研究对象的感知和偏好的传统降维方法。该方法会计算任意两个样本点之间的距离,使得投影到低维空间之后能够保持这种相对距离从而实现投影。

由于 sklearn 中 MDS 是采用迭代优化方式,下面实现了迭代和非迭代的两种。

Python实现12种降维算法

MDS 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/MDS

  • ISOMAP

Isomap 即等度量映射算法,该算法可以很好地解决 MDS 算法在非线性结构数据集上的弊端。

MDS 算法是保持降维后的样本间距离不变,Isomap 算法则引进了邻域图,样本只与其相邻的样本连接,计算出近邻点之间的距离,然后在此基础上进行降维保距。

Python实现12种降维算法

ISOMAP 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/ISOMAP

LLE(locally linear embedding)LLE 即局部线性嵌入算法,它是一种非线性降维算法。该算法核心思想为每个点可以由与它相邻的多个点的线性组合而近似重构,然后将高维数据投影到低维空间中,使其保持数据点之间的局部线性重构关系,即有相同的重构系数。在处理所谓的流形降维的时候,效果比 PCA 要好很多。

Python实现12种降维算法

LLE 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LLE

  • t-SNE

t-SNE 也是一种非线性降维算法,非常适用于高维数据降维到 2 维或者 3 维进行可视化。它是一种以数据原有的趋势为基础,重建其在低纬度(二维或三维)下数据趋势的无监督机器学习算法。

下面的结果展示参考了源代码,同时也可用 Tensorflow 实现(无需手动更新参数)。

Python实现12种降维算法

t-SNE 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/T-SNE

  • LE(Laplacian Eigenmaps)

LE 即拉普拉斯特征映射,它与 LLE 算法有些相似,也是以局部的角度去构建数据之间的关系。它的直观思想是希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近;以这种方式,可以得到一个能反映流形的几何结构的解。

Python实现12种降维算法

LE 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LE

  • LPP(Locality Preserving Projections)

LPP 即局部保留投影算法,其思路和拉普拉斯特征映射类似,核心思想为通过最好的保持一个数据集的邻居结构信息来构造投影映射,但 LPP 不同于 LE 的直接得到投影结果,它需要求解投影矩阵。

Python实现12种降维算法

LPP 降维算法展示

代码地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LPP

  • *《dimensionality_reduction_alo_codes》项目作者简介

Heucoder,目前是哈尔滨工业大学计算机技术在读硕士生,主要活跃于互联网领域,知乎昵称为「超爱学习」,其 github 主页地址为:https://github.com/heucoder。

Github 项目地址:

https://github.com/heucoder/dimensionality_reduction_alo_codes

以上就是Python实现12种降维算法的详细内容,更多请关注编程网其它相关文章!

--结束END--

本文标题: Python实现12种降维算法

本文链接: https://lsjlt.com/news/205601.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python实现12种降维算法
    大家好,我是Peter~网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并...
    99+
    2023-05-14
    算法 Python 降维
  • Python怎么实现12种降维算法
    今天小编给大家分享一下Python怎么实现12种降维算法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。为什么要进行数据降维所...
    99+
    2023-06-30
  • Python实现12种降维算法的示例代码
    目录为什么要进行数据降维数据降维原理主成分分析(PCA)降维算法其它降维算法及代码地址1.KPCA(kernel PCA)2.LDA(Linear Discriminant Anal...
    99+
    2024-04-02
  • PythonPCA降维的两种实现方法
    目录前言PCA降维的一般步骤为:实现PCA降维,一般有两种方法:总结前言         PCA降维,...
    99+
    2024-04-02
  • C语言怎么实现12种排序算法
    这篇文章主要介绍了C语言怎么实现12种排序算法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言怎么实现12种排序算法文章都会有所收获,下面我们一起来看看吧。1.冒泡排序思路:比较相邻的两个数字,如果前一个数...
    99+
    2023-06-30
  • python图像降噪算法怎么实现
    在Python中,可以使用OpenCV库来实现图像降噪算法。以下是一种常见的降噪算法——中值滤波算法的实现示例: import cv...
    99+
    2023-10-27
    python
  • js多维数组降维的5种方法
    目录一,递归二,将多维数组转为字符串,再转化为一维数组三,利用数组的方法四、利用contact 五、利用扩展运算符多维数组降维也就是数组扁平化 数组扁平化的方法有很多种,但...
    99+
    2023-05-15
    js多维数组降维 js 数组降维
  • Python机器学习之PCA降维算法详解
    目录一、算法概述二、算法步骤三、相关概念四、算法优缺点五、算法实现六、算法优化一、算法概述 主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法...
    99+
    2022-06-02
    Python PCA降维算法 python机器学习
  • C语言完整实现12种排序算法(小结)
    目录1.冒泡排序2.插入排序3.折半插入排序4.希尔排序5.选择排序6.鸡尾酒排序7.堆排序8.快速排序9.归并排序10.计数排序11.桶排序12.基数排序1.冒泡排序 思路:比较相...
    99+
    2024-04-02
  • 使用Python在实现一个梯度下降算法
    这期内容当中小编将会给大家带来有关使用Python在实现一个梯度下降算法,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。Python主要用来做什么Python主要应用于:1、Web开发;2、数据科学研究;3...
    99+
    2023-06-06
  • JS数组降维的几种方法详解
    二维数组降维 使用数组实例方法concat和ES6扩展运算符降维 let arr=[1,2,[3,4],5]; let arr1=[].concat(...arr); ...
    99+
    2024-04-02
  • Python机器学习之PCA降维算法的示例分析
    小编给大家分享一下Python机器学习之PCA降维算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、算法概述主成分分析 (Principal Com...
    99+
    2023-06-15
  • python机器学习算法与数据降维分析详解
    目录一、数据降维1.特征选择2.主成分分析(PCA)3.降维方法使用流程二、机器学习开发流程1.机器学习算法分类2.机器学习开发流程三、转换器与估计器1.转换器2.估计器一、数据降维...
    99+
    2024-04-02
  • js如何实现数组降维
    这篇文章将为大家详细讲解有关js如何实现数组降维,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。数组降维二维数组let arr = [ [1], [2],&...
    99+
    2023-06-27
  • python机器学习算法与数据降维的示例分析
    这篇文章主要介绍python机器学习算法与数据降维的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、数据降维机器学习中的维度就是特征的数量,降维即减少特征数量。降维方式有:特征选择、主成分分析。1.特征选择...
    99+
    2023-06-25
  • 图文详解梯度下降算法的原理及Python实现
    目录1.引例2.数值解法3.梯度下降算法4.代码实战:Logistic回归1.引例 给定如图所示的某个函数,如何通过计算机算法编程求f(x)min? 2.数值解法 传统方法是数值解...
    99+
    2024-04-02
  • PHP如何实现多维数组降级
    这篇文章将为大家详细讲解有关PHP如何实现多维数组降级,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。多维数组降级function array_flatten($arr) { ...
    99+
    2023-06-03
  • Python列表(list)反序(降序)的7种实现方式
    Python列表(list)反序(降序)的实现方式:原址反序,list.reverse()、list.sort()、全数组遍历、1/2数组遍历;新生成列表,resersed()、sorted...
    99+
    2023-10-26
    算法 python
  • python实现图像降噪
    本文实例为大家分享了python实现图像降噪的具体代码,供大家参考,具体内容如下 任务描述 背景 图像在数字化和传输等过程中会产生噪声,从而影响图像的质量,而图像降噪技术可以有效地减...
    99+
    2024-04-02
  • python怎么实现常用的五种排序算法
    这篇文章将为大家详细讲解有关python怎么实现常用的五种排序算法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、冒泡排序原理:比较相邻的元素。如果第一个比第二个大就交换他们两个每一对相邻元素做同样的工...
    99+
    2023-06-20
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作