返回顶部
首页 > 资讯 > 后端开发 > Python >30 个数据工程必备的Python 包
  • 326
分享到

30 个数据工程必备的Python 包

数据Python编程语言 2023-05-14 21:05:57 326人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

python 可以说是最容易入门的编程语言,在numpy,scipy等基础包的帮助下,对于数据的处理和机器学习来说Python可以说是目前最好的语言,在各位大佬和热心贡献者的帮助下Python拥有一个庞大的社区支持技术发展,开发两个各种 P

python 可以说是最容易入门编程语言,在numpy,scipy等基础包的帮助下,对于数据的处理和机器学习来说Python可以说是目前最好的语言,在各位大佬和热心贡献者的帮助下Python拥有一个庞大的社区支持技术发展,开发两个各种 Python 包来帮助数据人员的工作。

30 个数据工程必备的Python 包

在本文中,将介绍一些非常独特的并且好用的 Python 包,它们可以在许多方面帮助你构建数据的工作流。

1、Knockknock

Knockknock是一个简单的Python包,它会在机器学习模型训练结束或崩溃时通知您。我们可以通过多种渠道获得通知,如电子邮件、Slack、Microsoft Teams等。

为了安装该包,我们使用以下代码。

pip install knockknock

例如,我们可以使用以下代码将机器学习建模训练状态通知到指定的电子邮件地址。

from knockknock import email_senderfrom sklearn.linear_model import LinearRegressionimport numpy as np@email_sender(recipient_emails=["", ""], sender_email="")def train_linear_model(your_nicest_parameters):x = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])y = np.dot(x, np.array([1, 2])) + 3 regression = LinearRegression().fit(x, y)return regression.score(x, y)

这样就可以在该函数出现问题或者完成时获得通知。

2、tqdm

当需要进行迭代或循环时,如果你需要显示进度条?那么tqdm就是你需要的。这个包将在你的笔记本或命令提示符中提供一个简单的进度计。

让我们从安装包开始。

pip install tqdm

然后可以使用以下代码来显示循环过程中的进度条。

from tqdm import tqdMQ = 0for i in tqdm(range(10000000)):q = i +1

30 个数据工程必备的Python 包

就像上面的gifg,它可以在notebook上显示一个很好的进度条。当有一个复杂的迭代并且想要跟踪进度时,它会非常有用。

3、pandas-log

Panda -log可以对Panda的基本操作提供反馈,如.query、.drop、.merge等。它基于R的Tidyverse,可以使用它了解所有数据分析步骤。

安装包

pip install pandas-log

安装包之后,看看下面的示例。

import pandas as pdimport numpy as npimport pandas_logdf = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],"toy": [np.nan, 'Batmobile', 'Bullwhip'],"born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]})

然后让我们尝试用下面的代码做一个简单的 pandas 操作记录。

with pandas_log.enable():res = (df.drop("born", axis = 1).groupby('name'))

30 个数据工程必备的Python 包

通过 pandas-log,我们可以获取所有的执行信息。

4、Emoji

顾名思义,Emoji 是一个支持 emoji 文本解析的 Python 包。 通常,我们很难用 Python 处理表情符号,但 Emoji 包可以帮助我们进行转换。

使用以下代码安装 Emoji 包。

pip install emoji

看看下面代码:

import emojiprint(emoji.emojize('Python is :thumbs_up:'))

30 个数据工程必备的Python 包

有了这个包,可以轻易的输出表情符号。

5、TheFuzz

TheFuzz 使用 Levenshtein 距离来匹配文本以计算相似度。

pip install thefuzz

下面代码介绍如何使用 TheFuzz 进行相似性文本匹配。

from thefuzz import fuzz, process#Testing the score between two sentencesfuzz.ratio("Test the Word", "test the Word!")

30 个数据工程必备的Python 包

TheFuzz 还可以同时从多个单词中提取相似度分数。

choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]process.extract("new york jets", choices, limit=2)

30 个数据工程必备的Python 包

TheFuzz 适用于任何文本数据相似性检测,这个工作在NLP中非常重要。

6、Numerizer

Numerizer 可将写入的数字文本转换为对应的整数或浮点数。

pip install numerizer

然后 让我们尝试几个输入来进行转换。

from numerizer import numerizenumerize('forty two')

30 个数据工程必备的Python 包

如果使用另一种书写风格,它也可以工作的。

numerize('forty-two')

30 个数据工程必备的Python 包

numerize('nine and three quarters')

30 个数据工程必备的Python 包

如果输入不是数字的表达式,那么将会保留:

numerize('maybe around nine and three quarters')

30 个数据工程必备的Python 包

7、PyAutoGUI

PyAutoGUI 可以自动控制鼠标和键盘。

pip install pyautogui

然后我们可以使用以下代码测试

import pyautoguipyautogui.moveTo(10, 15)pyautogui.click()pyautogui.doubleClick()pyautogui.press('enter')

上面的代码会将鼠标移动到某个位置并单击鼠标。 当需要重复操作(例如下载文件或收集数据)时,非常有用。

8、Weightedcalcs

Weightedcalcs 用于统计计算。 用法从简单的统计数据(例如加权平均值、中位数和标准变化)到加权计数和分布等。

pip install weightedcalcs

使用可用数据计算加权分布。

import seaborn as snsdf = sns.load_dataset('mpg')import weightedcalcs as wccalc = wc.Calculator("mpg")

然后我们通过传递数据集并计算预期变量来进行加权计算。

calc.distribution(df, "origin")

30 个数据工程必备的Python 包

9、scikit-posthocs

scikit-posthocs 是一个用于“事后”测试分析的 python 包,通常用于统计分析中的成对比较。 该软件包提供了简单的类似 scikit-learn api 来进行分析。

pip install scikit-posthocs

然后让我们从简单的数据集开始,进行 ANOVA 测试。

import statsmodels.api as saimport statsmodels.fORMula.api as sfaimport scikit_posthocs as spdf = sa.datasets.get_rdataset('iris').datadf.columns = df.columns.str.replace('.', '')lm = sfa.ols('SepalWidth ~ C(Species)', data=df).fit()anova = sa.stats.anova_lm(lm)print(anova)

30 个数据工程必备的Python 包

获得了 ANOVA 测试结果,但不确定哪个变量类对结果的影响最大,可以使用以下代码进行原因的查看。

sp.posthoc_ttest(df, val_col='SepalWidth', group_col='Species', p_adjust='holm')

30 个数据工程必备的Python 包

使用 scikit-posthoc,我们简化了事后测试的成对分析过程并获得了 P 值

10、Cerberus

Cerberus 是一个用于数据验证的轻量级 python 包。

pip install cerberus

Cerberus 的基本用法是验证类的结构。

from cerberus import Validatorschema = {'name': {'type': 'string'}, 'gender':{'type': 'string'}, 'age':{'type':'integer'}}v = Validator(schema)

定义好需要验证的结构后,可以对实例进行验证。

document = {'name': 'john doe', 'gender':'male', 'age': 15}v.validate(document)

30 个数据工程必备的Python 包

如果匹配,则 Validator 类将输出True 。 这样我们可以确保数据结构是正确的。

11、ppscore

ppscore 用于计算与目标变量相关的变量的预测能力。 该包计算可以检测两个变量之间的线性或非线性关系的分数。 分数范围从 0(无预测能力)到 1(完美预测能力)。

pip install ppscore

使用 ppscore 包根据目标计算分数。

import seaborn as snsimport ppscore as ppsdf = sns.load_dataset('mpg')pps.predictors(df, 'mpg')

30 个数据工程必备的Python 包

结果进行了排序。 排名越低变量对目标的预测能力越低。

12、Maya

Maya 用于尽可能轻松地解析 DateTime 数据。

pip install maya

然后我们可以使用以下代码轻松获得当前日期。

import mayanow = maya.now()print(now)

还可以为明天日期。

tomorrow = maya.when('tomorrow')tomorrow.datetime()

30 个数据工程必备的Python 包

13、Pendulum

Pendulum 是另一个涉及 DateTime 数据的 python 包。 它用于简化任何 DateTime 分析过程。

pip install pendulum

我们可以对实践进行任何的操作。

import pendulumnow = pendulum.now("Europe/Berlin")now.in_timezone("Asia/Tokyo")now.to_iso8601_string()now.add(days=2)

30 个数据工程必备的Python 包

14、cateGory_encoders

category_encoders 是一个用于类别数据编码(转换为数值数据)的python包。 该包是各种编码方法的集合,我们可以根据需要将其应用于各种分类数据。

pip install category_encoders

可以使用以下示例应用转换。

from category_encoders import BinaryEncoderimport pandas as pdenc = BinaryEncoder(cols=['origin']).fit(df)numeric_dataset = enc.transform(df)numeric_dataset.head()

30 个数据工程必备的Python 包

15、scikit-multilearn

scikit-multilearn 可以用于特定于多类分类模型的机器学习模型。 该软件包提供 API 用于训练机器学习模型以预测具有两个以上类别目标的数据集。

pip install scikit-multilearn

利用样本数据集进行多标签KNN来训练分类器并度量性能指标。

from skmultilearn.dataset import load_datasetfrom skmultilearn.adapt import MLkNNimport sklearn.metrics as metricsX_train, y_train, feature_names, label_names = load_dataset('emotions', 'train')X_test, y_test, _, _ = load_dataset('emotions', 'test')classifier = MLkNN(k=3)prediction = classifier.fit(X_train, y_train).predict(X_test)metrics.hamming_loss(y_test, prediction)

30 个数据工程必备的Python 包

16、Multiset

Multiset类似于内置的set函数,但该包允许相同的字符多次出现。

pip install multiset

可以使用下面的代码来使用 Multiset 函数。

from multiset import Multisetset1 = Multiset('aab')set1

30 个数据工程必备的Python 包

17、Jazzit

Jazzit 可以在我们的代码出错或等待代码运行时播放音乐。

pip install jazzit

使用以下代码在错误情况下尝试示例音乐。

from jazzit import error_track@error_track("curb_your_enthusiasm.mp3", wait=5)def run():for num in reversed(range(10)):print(10/num)

这个包虽然没什么用,但是它的功能是不是很有趣,哈

18、handcalcs

handcalcs 用于简化notebook中的数学公式过程。 它将任何数学函数转换为其方程形式。

pip install handcalcs

使用以下代码来测试 handcalcs 包。 使用 %%render 魔术命令来渲染 Latex 。

import handcalcs.renderfrom math import sqrt
%%rendera = 4b = 6c = sqrt(3*a + b/7)

30 个数据工程必备的Python 包

19、NeatText

NeatText 可简化文本清理和预处理过程。 它对任何 NLP 项目和文本机器学习项目数据都很有用。

pip install neattext

使用下面的代码,生成测试数据

import neattext as nt mytext = "This is the word sample but ,our WEBSITE is https://exaempleeele.com ✨."docx = nt.TextFrame(text=mytext)

TextFrame 用于启动 NeatText 类然后可以使用各种函数来查看和清理数据。

docx.describe()

30 个数据工程必备的Python 包

使用 describe 函数,可以显示每个文本统计信息。进一步清理数据,可以使用以下代码。

docx.normalize()

30 个数据工程必备的Python 包

20、Combo

Combo 是一个用于机器学习模型和分数组合的 python 包。 该软件包提供了一个工具箱,允许将各种机器学习模型训练成一个模型。 也就是可以对模型进行整合。

pip install combo

使用来自 scikit-learn 的乳腺癌数据集和来自 scikit-learn 的各种分类模型来创建机器学习组合。

from sklearn.tree import DecisionTreeClassifierfrom sklearn.linear_model import LoGISticRegressionfrom sklearn.ensemble import GradientBoostinGClassifierfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_breast_cancerfrom combo.models.classifier_stacking import Stackingfrom combo.utils.data import evaluate_print

接下来,看一下用于预测目标的单个分类器。

# Define data file and read X and yrandom_state = 42X, y = load_breast_cancer(return_X_y=True)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,random_state=random_state)# initialize a group of clfsclassifiers = [DecisionTreeClassifier(random_state=random_state),LogisticRegression(random_state=random_state),KNeighborsClassifier(),RandomForestClassifier(random_state=random_state),GradientBoostingClassifier(random_state=random_state)]clf_names = ['DT', 'LR', 'KNN', 'RF', 'GBDT']for i, clf in enumerate(classifiers):clf.fit(X_train, y_train)y_test_predict = clf.predict(X_test)evaluate_print(clf_names[i] + ' | ', y_test, y_test_predict)print()

30 个数据工程必备的Python 包

使用 Combo 包的 Stacking 模型。

clf = Stacking(classifiers, n_folds=4, shuffle_data=False,keep_original=True, use_proba=False,random_state=random_state)clf.fit(X_train, y_train)y_test_predict = clf.predict(X_test)evaluate_print('Stacking | ', y_test, y_test_predict)

30 个数据工程必备的Python 包

21、PyAztro

你是否需要星座数据或只是对今天的运气感到好奇? 可以使用 PyAztro 来获得这些信息! 这个包有幸运数字、幸运标志、心情等等。 这是我们人工智能算命的基础数据,哈

pip install pyaztro

使用以下代码访问今天的星座信息。

import pyaztropyaztro.Aztro(sign='gemini').description

30 个数据工程必备的Python 包

22、Faker

Faker 可用于简化生成合成数据。 许多开发人员使用这个包来创建测试的数据。

pip install Faker

要使用 Faker 包生成合成数据

from faker import Fakerfake = Faker()

生成名字

fake.name()

30 个数据工程必备的Python 包

每次从 Faker 类获取 .name 属性时,Faker 都会随机生成数据。

23、Fairlearn

Fairlearn 用于评估和减轻机器学习模型中的不公平性。 该软件包提供了许多查看偏差所必需的 API。

pip install fairlearn

然后可以使用 Fairlearn 的数据集来查看模型中有多少偏差。

from fairlearn.metrics import MetricFrame, selection_ratefrom fairlearn.datasets import fetch_adultdata = fetch_adult(as_frame=True)X = data.datay_true = (data.target == '>50K') * 1sex = X['sex']selection_rates = MetricFrame(metrics=selection_rate,y_true=y_true,y_pred=y_true,sensitive_features=sex)fig = selection_rates.by_group.plot.bar(legend=False, rot=0,title='Fraction earning over $50,000')

30 个数据工程必备的Python 包

Fairlearn API 有一个 selection_rate 函数,可以使用它来检测组模型预测之间的分数差异,以便我们可以看到结果的偏差。

24、tiobeindexpy

tiobeindexpy 用于获取 TIOBE 索引数据。 TIOBE 指数是一个编程排名数据,对于开发人员来说是非常重要的因为我们不想错过编程世界的下一件大事。

pip install tiobeindexpy

可以通过以下代码获得当月前 20 名的编程语言排名。

from tiobeindexpy import tiobeindexpy as tbdf = tb.top_20()

30 个数据工程必备的Python 包

25、pytrends

pytrends 可以使用 Google API 获取关键字趋势数据。如果想要了解当前的网络趋势或与我们的关键字相关的趋势时,该软件包非常有用。这个需要访问google,所以你懂的。

pip install pytrends

假设我想知道与关键字“Present Gift”相关的当前趋势,

from pytrends.request import TrendReqimport pandas as pdpytrend = TrendReq()keywords = pytrend.suggestions(keyword='Present Gift')df = pd.DataFrame(keywords)df

30 个数据工程必备的Python 包

该包将返回与关键字相关的前 5 个趋势。

26、visions

visions 是一个用于语义数据分析的 python 包。 该包可以检测数据类型并推断列的数据应该是什么。

pip install visions

可以使用以下代码检测数据中的列数据类型。 这里使用 seaborn 的 Titanic 数据集。

import seaborn as snsfrom visions.functional import detect_type, infer_typefrom visions.typesets import CompleteSetdf = sns.load_dataset('titanic')typeset = CompleteSet()converting everything to stringsprint(detect_type(df, typeset))

30 个数据工程必备的Python 包

27、Schedule

Schedule 可以为任何代码创建作业调度功能

pip install schedule

例如,我们想10 秒工作一次:

import scheduleimport timedef job():print("I'm working...")schedule.every(10).seconds.do(job)while True:schedule.run_pending()time.sleep(1)

30 个数据工程必备的Python 包

28、autocorrect

autocorrect 是一个用于文本拼写更正的 python 包,可应用于多种语言。 用法很简单,并且对数据清理过程非常有用。

pip install autocorrect

可以使用类似于以下代码进行自动更正。

from autocorrect import Spellerspell = Speller()spell("I'm not sleaspy and tehre is no place I'm giong to.")

30 个数据工程必备的Python 包

29、funcy

funcy 包含用于日常数据分析使用的精美实用功能。 包中的功能太多了,我无法全部展示出来,有兴趣的请查看他的文档。

pip install funcy

这里只展示一个示例函数,用于从可迭代变量中选择一个偶数,如下面的代码所示。

from funcy import select, evenselect(even, {i for i in range (20)})

30 个数据工程必备的Python 包

30、IceCream

IceCream 可以使调试过程更容易。该软件包在打印/记录过程中提供了更详细的输出。

pip install icecream

可以使用下面代码

from icecream import icdef some_function(i):i = 4 + (1 * 2)/ 10 return i + 35ic(some_function(121))

30 个数据工程必备的Python 包

也可以用作函数检查器。

def foo():ic()if some_function(12):ic()else:ic()foo()

30 个数据工程必备的Python 包

打印的详细程度非常适合分析。

总结

在本文中,总结了 30个在数据工作中有用的独特 Python 包。 大多数软件包易于使用且简单明了,但有些可能功能较多需要进一步阅读其文档,如果你有兴趣请去pypi网站搜索并查看该软件包的主页和文档,希望本文对你有所帮助。

以上就是30 个数据工程必备的Python 包的详细内容,更多请关注编程网其它相关文章!

--结束END--

本文标题: 30 个数据工程必备的Python 包

本文链接: https://lsjlt.com/news/205497.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 30 个数据工程必备的Python 包
    Python 可以说是最容易入门的编程语言,在numpy,scipy等基础包的帮助下,对于数据的处理和机器学习来说Python可以说是目前最好的语言,在各位大佬和热心贡献者的帮助下Python拥有一个庞大的社区支持技术发展,开发两个各种 P...
    99+
    2023-05-14
    数据 Python 编程语言
  • 有哪些数据工程必备的Python包
    这篇文章主要介绍“有哪些数据工程必备的Python包”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“有哪些数据工程必备的Python包”文章能帮助大家解决问题。1、KnockknockKnockkno...
    99+
    2023-07-06
  • 8个工程必备的JavaScript代码片段
    目录1. 获取文件后缀名2. 复制内容到剪贴板3. 休眠多少毫秒4. 生成随机字符串5. 简单的深拷贝6. 数组去重7. 对象转化为FormData对象8.保留到小数点以后n位1. ...
    99+
    2024-04-02
  • Python编程必备的工具有哪些
    这篇文章主要讲解了“Python编程必备的工具有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python编程必备的工具有哪些”吧!  1、lpython:是一个基于Python She...
    99+
    2023-06-01
  • Python研发工程师必备工具合集
    Python研发工程师必备工具合集 1、必备工具 2、常用网站 3、学习路线 4、必备技能 5、书籍推荐 6、进阶学习 一、必备工具: 1.Sublime Text 2.Notepad++ 3.Visual Studio Code 4.At...
    99+
    2023-01-31
    合集 工程师 工具
  • 实时数据分析必备工具:Python、Numpy 和 Linux。
    数据分析是现代商业的重要组成部分。对于企业而言,数据分析可以帮助企业更好地了解客户、预测市场趋势、提高效率等。而在实时数据分析方面,Python、Numpy 和 Linux 是必不可少的工具。 Python 是一种高级编程语言,它被广泛用...
    99+
    2023-10-29
    linux numpy 实时
  • python爬虫工程师必备的10个爬虫工具分别是什么
    python爬虫工程师必备的10个爬虫工具分别是什么,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。爬虫工程师必备的10个爬虫工具爬虫工程师必备的10个爬虫工具!...
    99+
    2023-06-02
  • Laravel编程必备的Python IDE和JavaScript工具
    Laravel是一个流行的PHP框架,它提供了许多有用的工具和功能来帮助开发人员快速构建高质量的Web应用程序。在Laravel开发过程中,使用Python IDE和JavaScript工具可以帮助我们提高开发效率和代码质量。在本文中,我...
    99+
    2023-11-10
    javascript ide laravel
  • python的30个编程技巧
     1、原地交换两个数字 1 x, y =10, 20 2 3 print(x, y) 4 5 y, x = x, y 6 7 print(x, y) 10 20 20 10 2、链状比较操作符 1 n = 10 2 3 pr...
    99+
    2023-01-30
    编程技巧 python
  • 2019年,Python工程师必考的6个
    第1题:Python里面如何实现tuple和list的转换? 函数tuple(seq)可以把所有可迭代的(iterable)序列转换成一个tuple, 元素不变,排序也不变 list转为tuple: temp_list = [1,2,3,...
    99+
    2023-01-31
    工程师 Python
  • Python工程师面试必备25条Pyth
    1.到底什么是Python?你可以在回答中与其他技术进行对比 下面是一些关键点: Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译。其他解释型语言还包括PHP和Ruby。 Pyth...
    99+
    2023-01-31
    工程师 Python Pyth
  • Python 打包 api:是你的代码优化必备工具吗?
    随着 Python 逐渐成为一种流行的编程语言,越来越多的开发者开始使用 Python 编写程序。但是,Python 代码的执行速度相对较慢,这对于许多需要高性能的应用程序来说是一个问题。为了解决这个问题,Python 打包 api 应运...
    99+
    2023-07-23
    打包 api 关键字
  • 每个系统管理员必知的 30 个 Linux 系统监控工具
    您需要监控 linux 服务器的性能吗?试试用这些内置命令和附加工具吧!大多数 Linux 发行版都附带了大量的监控工具。这些工具提供了获取系统活动的相关指标。您可以使用这些工具来查找性能问题的可能原因。本文提到的是一些...
    99+
    2022-06-04
    linux 系统监控工具
  • 七个Python必备的GUI库
    GUI(图形用户界面),顾名思义就是用图形的方式,来显示计算机操作的界面,更加方便且直观。 与之相对应的则是CUI(命令行用户交互),就是常见的Dos命令行操作,需要记忆一些常用的命令,对于普通人而言,操作起来学习难...
    99+
    2022-06-02
    python python gui
  • 从Tensor到Numpy:数据处理的必备工具
    从Tensor到Numpy:数据处理的必备工具 引言: 随着人工智能和机器学习的迅速发展,大量的数据处理和分析工作变得日益重要。在这个过程中,TensorFlow和NumPy成为了数据处理的两个重要工具。TensorFlow是一...
    99+
    2024-01-26
    Numpy 数据处理 tensor
  • PHP编程的必备算法,如何处理大数据打包?
    在PHP编程中,数据处理是非常重要的一个环节。当我们需要处理大量的数据时,如何高效地打包和传输这些数据成为了一个关键问题。本文将介绍PHP编程中的必备算法,并演示如何处理大数据打包。 一、数据打包算法 在PHP编程中,我们通常使用seri...
    99+
    2023-06-24
    编程算法 大数据 打包
  • 学习Go语言必备的一个包
    在学习Go语言过程中,有一个非常重要的包是不可或缺的,那就是fmt包。fmt包是Go语言中用来进行格式化输入输出的标准包,它提供了各种格式化输出函数,帮助程序员进行数据的展示和交互。在...
    99+
    2024-03-15
    学习 go go语言 格式化输出
  • 新手必备:ASP 数据库连接的懒人包
    踏入 ASP 数据库连接之旅 作为一名初入 ASP 世界的开发者,建立与数据库的连接至关重要。数据库连接允许你们与数据存储库进行交互,从而存储、检索和更新信息。幸运的是,ASP 为我们提供了 ADO.NET 技术,它提供了连接和管理数据...
    99+
    2024-02-20
    ASP 数据库连接 ADO.NET 连接字符串
  • NumPy库中的矩阵运算:优化Python数据分析的必备工具
    在Python数据分析领域,矩阵运算是非常重要的一环。NumPy库是Python中最常用的科学计算库之一,它提供了丰富的矩阵运算功能,可以极大地优化Python数据分析的效率。本文将介绍NumPy库中的矩阵运算功能,以及如何使用它们来优化...
    99+
    2023-11-09
    同步 numy 日志
  • Java ActiveMQ 的 20 个必备教程
    1. 初识 ActiveMQ ActiveMQ 官方教程:涵盖基础概念、安装和配置。 ActiveMQ Quickstart 指南:面向初学者的快速入门教程。 2. 消息传递基础 Java 消息服务 (JMS):了解 JMS 规范...
    99+
    2024-02-19
    ActiveMQ Java 消息传递 JMS Apache
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作