目录一.定义管理器接口二.定义区域tower三.AOI的具体方法实现1.进入实现2.离开区域3.移动4.同步优化的思路一般是: 第一个是尽量降低向客户端同步对象的数量,第二个是尽量降
优化的思路一般是: 第一个是尽量降低向客户端同步对象的数量,第二个是尽量降低单个对象向客户端同步的数据.
"九宫格"是最常见的视野管理算法了.它的优点在于原理和实现都非常简单.
// AOI 管理器
type AOIManager interface {
GetWidth() int
GetHeight() int
OnEnter(obj scene.GameObject, enterPos *geom.Vector2d) bool
OnLeave(obj scene.GameObject) bool
OnMove(obj scene.GameObject, movePos *geom.Vector2d) bool
OnSync()
}
1. 进入区域
2. 离开区域
3. 在区域移动
4. 同步信息
具体实现:
type TowerAOIManager struct {
minX, maxX, minY, maxY float64 // 单位 m
towerRange float64 // 格子大小
towers [][]tower
xTowerNum, yTowerNum int
}
划分格子: 按照实际情况出发,规定格子大小 towerRange. (一般 九个格子的范围需大于屏幕看到的视野范围) 这样才能保证客户端场景物体的生成和消失在玩家屏幕外.不会突然出现.
// 构造结构
func NewTowerAOIManager(minX, maxX, minY, maxY float64, towerRange float64) AOIManager {
mgr := &TowerAOIManager{minX: minX, maxX: maxX, minY: minY, maxY: maxY, towerRange: towerRange}
mgr.init()
return mgr
}
func (m *TowerAOIManager) init() {
numXSlots := int((m.maxX-m.minX)/m.towerRange) + 1
m.xTowerNum = numXSlots
numYSlots := int((m.maxY-m.minY)/m.towerRange) + 1
m.yTowerNum = numYSlots
m.towers = make([][]tower, numXSlots)
for i := 0; i < numXSlots; i++ {
m.towers[i] = make([]tower, numYSlots)
for j := 0; j < numYSlots; j++ {
key := NewKey(int64(i), int64(j))
m.towers[i][j].init(int64(key))
}
}
}
type tower struct {
towerId int64
context *TowerSyncContext
mapid2Obj map[uint32]scene.GameObject // obj容器
mapId2Watcher map[uint32]scene.GameObject // 观察集合
}
func (t *tower) init(key int64) {
t.towerId = key
t.context = NewTowerSyncContext() // 同步信息
t.mapId2Obj = make(map[uint32]scene.GameObject)
t.mapId2Watcher = make(map[uint32]scene.GameObject)
}
func (t *tower) AddObj(obj scene.GameObject, fromOtherTower scene.AOITower, bExclude bool) {
obj.SetAOITower(t)
t.mapId2Obj[obj.GetId()] = obj
if fromOtherTower == nil {
for watcherId, watcher := range t.mapId2Watcher {
if bExclude && watcherId == obj.GetId() {
continue
}
watcher.OnEnterAOI(obj)
}
} else {
// obj moved from other tower to this tower
for watcherId, watcher := range fromOtherTower.GetWatchers() {
if watcherId == obj.GetId() {
continue
}
if _, ok := t.mapId2Watcher[watcherId]; ok {
continue
}
watcher.OnLeaveAOI(obj)
}
for watcherId, watcher := range t.mapId2Watcher {
if watcherId == obj.GetId() {
continue
}
if _, ok := fromOtherTower.GetWatchers()[watcherId]; ok {
continue
}
watcher.OnEnterAOI(obj)
}
}
}
func (t *tower) RemoveObj(obj scene.GameObject, notifyWatchers bool) {
obj.SetAOITower(nil)
delete(t.mapId2Obj, obj.GetId())
if notifyWatchers {
for watcherId, watcher := range t.mapId2Watcher {
if watcherId == obj.GetId() {
continue
}
watcher.OnLeaveAOI(obj)
}
}
}
func (t *tower) addWatcher(obj scene.GameObject, bExclude bool) {
if bExclude {
if _, ok := t.mapId2Watcher[obj.GetId()]; ok {
// todo log
return
}
}
t.mapId2Watcher[obj.GetId()] = obj
// now obj can see all objs under this tower
for neighborId, neighbor := range t.mapId2Obj {
if neighborId == obj.GetId() {
continue
}
obj.OnEnterAOI(neighbor)
}
}
func (t *tower) removeWatcher(obj scene.GameObject) {
if _, ok := t.mapId2Watcher[obj.GetId()]; !ok {
// todo log
return
}
delete(t.mapId2Watcher, obj.GetId())
for neighborId, neighbor := range t.mapId2Obj {
if neighborId == obj.GetId() {
continue
}
obj.OnLeaveAOI(neighbor)
}
}
func (t *tower) GetWatchers() map[uint32]scene.GameObject {
return t.mapId2Watcher
}
func (t *tower) GetObjs() map[uint32]scene.GameObject {
return t.mapId2Obj
}
func (t *tower) GetTowerId() int64 {
return t.towerId
}
func (t *tower) AddSyncData(mod uint16, cmd uint16, msg protoreflect.ProtoMessage) {
t.context.AddSyncData(mod, cmd, msg)
}
func (t *tower) Broadcast() {
if len(t.context.fights) == 0 {
return
}
// 广播协议
....
t.context.ClearContext()
}
我们在回过头来继续说 mgr 的方法.
前提:
GameObject : 一切场景物体的基础接口
type GameObject interface {}
Vector2d : X,Y 坐标
type Vector2d struct {
x, y, w float64
}
具体实现:
如果是从上一个区域内离开,则先走 离开上一个区域,然后计算当前进入位置坐标对应的九宫区域,
然后把obj 加入到各个区域内
func (m *TowerAOIManager) OnEnter(obj scene.GameObject, enterPos *geom.Vector2d) bool {
if obj.GetAOITower() != nil {
m.OnLeave(obj) // 离开上一个区域
}
obj.SetPosition(enterPos) // 设置当前位置
// obj 视野范围内的所有区域
m.visitWatchedTowers(enterPos, obj.GetViewRange(), func(tower *tower) {
tower.addWatcher(obj, false)
})
t := m.getTowerXY(enterPos)
// 当前位置所在的区域
t.AddObj(obj, nil, false)
return true
}
func (m *TowerAOIManager) getTowerXY(xyPos *geom.Vector2d) *tower {
xi, yi := m.transXY(xyPos.GetX(), xyPos.GetY())
return &m.towers[xi][yi]
}
关键的方法:
计算obj当前位置中,视野内能被观察到的所有区域.
func (m *TowerAOIManager) visitWatchedTowers(xyPos *geom.Vector2d, aoiDistance float64, f func(*tower)) {
ximin, ximax, yimin, yimax := m.getWatchedTowers(xyPos.GetX(), xyPos.GetY(), aoiDistance)
for xi := ximin; xi <= ximax; xi++ {
for yi := yimin; yi <= yimax; yi++ {
tower := &m.towers[xi][yi]
f(tower)
}
}
}
func (aoiman *TowerAOIManager) getWatchedTowers(x, y float64, aoiDistance float64) (int, int, int, int) {
ximin, yimin := aoiman.transXY(x-aoiDistance, y-aoiDistance)
ximax, yimax := aoiman.transXY(x+aoiDistance, y+aoiDistance)
return ximin, ximax, yimin, yimax
}
func (m *TowerAOIManager) transXY(x, y float64) (int, int) {
xi := int((x - m.minX) / m.towerRange)
yi := int((y - m.minY) / m.towerRange)
return m.nORMalizeXi(xi), m.normalizeYi(yi)
}
func (m *TowerAOIManager) normalizeXi(xi int) int {
if xi < 0 {
xi = 0
} else if xi >= m.xTowerNum {
xi = m.xTowerNum - 1
}
return xi
}
func (m *TowerAOIManager) normalizeYi(yi int) int {
if yi < 0 {
yi = 0
} else if yi >= m.yTowerNum {
yi = m.yTowerNum - 1
}
return yi
}
func (m *TowerAOIManager) OnLeave(obj scene.GameObject) bool {
obj.GetAOITower().RemoveObj(obj, true) // 离开当前区域
// 查找视野内所有区域,然后从关注列表中移除
m.visitWatchedTowers(obj.GetPosition(), obj.GetViewRange(), func(tower *tower) {
tower.removeWatcher(obj)
})
return true
}
每帧移动坐标点 movePos
func (m *TowerAOIManager) OnMove(obj scene.GameObject, movePos *geom.Vector2d) bool {
oldX, oldY := obj.GetPosition().GetX(), obj.GetPosition().GetY()
obj.SetPosition(movePos) //设置当前坐标
t0 := obj.GetAOITower()
t1 := m.getTowerXY(movePos)
// 判断移动是否跨区域了
if t0.GetTowerId() != t1.GetTowerId() {
t0.RemoveObj(obj, false)
t1.AddObj(obj, t0, true)
}
// 计算前后变化的区域,进行移除和添加关注列表
oximin, oximax, oyimin, oyimax := m.getWatchedTowers(oldX, oldY, obj.GetViewRange())
ximin, ximax, yimin, yimax := m.getWatchedTowers(movePos.GetX(), movePos.GetY(), obj.GetViewRange())
for xi := oximin; xi <= oximax; xi++ {
for yi := oyimin; yi <= oyimax; yi++ {
if xi >= ximin && xi <= ximax && yi >= yimin && yi <= yimax {
continue
}
tower := &m.towers[xi][yi]
tower.removeWatcher(obj)
}
}
for xi := ximin; xi <= ximax; xi++ {
for yi := yimin; yi <= yimax; yi++ {
if xi >= oximin && xi <= oximax && yi >= oyimin && yi <= oyimax {
continue
}
tower := &m.towers[xi][yi]
tower.addWatcher(obj, true)
}
}
return true
}
每帧同步所有区域变化的物体对象
func (m *TowerAOIManager) OnSync() {
for i := 0; i < m.xTowerNum; i++ {
for j := 0; j < m.yTowerNum; j++ {
m.towers[i][j].Broadcast()
}
}
}
简单的实现了 AOI 区域变化管理,当然后面还需要优化,我们知道"九宫格" 算法的缺点:
1 . 当玩家跨越格子的时候,比如说从A点到B点.瞬间会有新增格子,那其中的对象就会进入视野,与此同时,就会有消失的格子,那其中的对象就要消失视野.这个瞬间就会出现一个流量激增点,它可能会导致客户端卡顿等问题.
2. 流量浪费.有客户端不需要的对象被同步过来了.我们知道它是基于格子来管理地图对象的.那么就会无法保证九宫区域一定刚好是视野范围.肯定是大于视野区域这样才保证同步对象正确.(如果是俯视角那种 ,视野就会是一个 梯形范围.)
或者你可以在服务端中,根据客户端梯形视野在作一遍初筛.
到此这篇关于Go语言实现AOI区域视野管理流程详解的文章就介绍到这了,更多相关Go AOI区域视野管理内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: Go语言实现AOI区域视野管理流程详解
本文链接: https://lsjlt.com/news/198645.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-04-05
2024-04-05
2024-04-05
2024-04-04
2024-04-05
2024-04-05
2024-04-05
2024-04-05
2024-04-04
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0