返回顶部
首页 > 资讯 > 后端开发 > Python >Python中识别图片/滑块验证码准确率极高的ddddocr库详解
  • 510
分享到

Python中识别图片/滑块验证码准确率极高的ddddocr库详解

Python 官方文档:入门教程 => 点击学习

摘要

目录前言环境准备快速开始图片验证码滑块验证码识别中文前言 验证码的种类有很多,它是常用的一种反爬手段,包括:图片验证码,滑块验证码,等一些常见的验证码场景。 识别验证码的python

前言

验证码的种类有很多,它是常用的一种反爬手段,包括:图片验证码,滑块验证码,等一些常见的验证码场景。

识别验证码的python 库有很多,用起来也并不简单,这里推荐一个简单实用的识别验证码的库 DDDdocr (带带弟弟ocr)库.

环境准备

Python 版本要求小于等于python3.9 版本

pip 安装

pip install ddddocr

下载的安装包比较大,一般用国内的下载源可以加快下载速度

pip install ddddocr -i https://pypi.douban.com/simple

GitHub地址 Https://github.com/sml2h3/ddddocr

快速开始

先随便找个纯英文的验证码,保持为a1.png

代码示例

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr()              # 实例化
with open('a1.png', 'rb') as f:     # 打开图片
    img_bytes = f.read()             # 读取图片
res = ocr.classification(img_bytes)  # 识别
print(res)

运行结果

已经能识别到 xnen ,但是会出现"欢迎使用ddddocr,本项目专注带动行业内卷…"提示语, 可以加一个参数show_ad=False

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)              # 实例化
with open('a1.png', 'rb') as f:     # 打开图片
    img_bytes = f.read()             # 读取图片
res = ocr.classification(img_bytes)  # 识别
print(res)

图片验证码

识别一下三种验证码

代码示例

import ddddocr                       # 导入 ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)              # 实例化
with open('a2.png', 'rb') as f:     # 打开图片
    img_bytes = f.read()             # 读取图片
res2 = ocr.classification(img_bytes)  # 识别

print(res2) 
with open('a3.png', 'rb') as f:     # 打开图片
    img_bytes = f.read()             # 读取图片
res3 = ocr.classification(img_bytes)  # 识别
print(res3)

with open('a4.png', 'rb') as f:     # 打开图片
    img_bytes = f.read()             # 读取图片
res4 = ocr.classification(img_bytes)  # 识别
print(res4)

运行结果

giv6j
zppk
4Tskh

滑块验证码

滑块验证码场景如下场景示例

先抠出2张图片,分别为background.png 和 target.png

解决问题的重点是计算缺口的位置

import ddddocr

det = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False)

with open('target.png', 'rb') as f:
    target_bytes = f.read()

with open('background.png', 'rb') as f:
    background_bytes = f.read()

res = det.slide_match(target_bytes, background_bytes, simple_target=True)
print(res)

运行结果

{'target_y': 0, 'target': [184, 58, 246, 120]}

target 的四个值就是缺口位置的左上角和右下角的左边位置

识别中文

识别图片上的文字

import ddddocr
import cv2

det = ddddocr.DdddOcr(det=True)

with open("test.png", 'rb') as f:
    image = f.read()

poses = det.detection(image)

im = cv2.imread("test.png")

for box in poses:
    x1, y1, x2, y2 = box
    im = cv2.rectangle(im, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)

cv2.imwrite("result.jpg", im)

保存后的图片

到此这篇关于Python中识别图片/滑块验证码准确率极高的ddddocr库详解的文章就介绍到这了,更多相关Python ddddocr库内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python中识别图片/滑块验证码准确率极高的ddddocr库详解

本文链接: https://lsjlt.com/news/197792.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作