返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >Postgresql源码分析returns setof函数oracle管道pipelined
  • 903
分享到

Postgresql源码分析returns setof函数oracle管道pipelined

Postgresql returns setof函数oracle管道pipelined 2023-01-31 12:01:16 903人浏览 安东尼
摘要

目录引言【功能】【代码】【实用函数】1 :管道函数是什么,应用于什么场景2 return next实现具体处理函数:exec_stmt_return_next1 初始化tuple s

引言

【功能】

  • oracle的return pipelined管道函数可以使一次返回的集合类型,变为 逐条返回pipe row(集合中的一条)给sql层,大大减少内存的使用。
  • postgresql的return setof函数并不能起到降低内存使用的效果,return next 单条数据只起到了缓存的效果,并不会把数据逐条返回SQL层处理,没有降低内存的效果。

【代码】

  • exec_stmt_return_next中的tupledesc从执行计划node中取出,返回值需要满足desc要求,缓存值也会按该desc保存。
  • return next对rec类型和row类型处理的区别
    • rec类型本质上就是tuple,数据和desc都以扩展形式存放在erh中。如果需要转换为tuple,有几个标准函数提供转换功能,且支持类型转换。【转换后调用tuplestore的标准接口缓存tuple】
    • row类型本质上是一个虚拟行(由一组datum位置组成),row->varnos[i]指向某一个datum,如果想把row转换为tuple,需要用exec_eval_datum算出varnos指向的datum的值,然后组装成values和nulls数组,用heap_fORM_tuple构造。注意这种转换过程不会有类型转换,如果需要的desc和算出来的列类型对不上,返回空。成功【转换后调用tuplestore的标准接口缓存tuple】
  • return next对var类型的处理:var看做单列tuple,按执行计划给的desc转换类型后构造tuple。【转换后调用tuplestore的标准接口缓存tuple】

【实用函数】

  • 通用
    • 类型转换:exec_cast_value(传入的值不能是eoh真实的头,使用前需要转成eoh存的1be头,1be指向真实头)
    • 数组拼接minimaltuple:heap_form_minimal_tuple
    • 有一个tuple和desc转换为另一个desc的tuple:convert_tuples_by_position、execute_attr_map_tuple
  • tuplestore:
    • 用values数组存tuple(用tuplestore_puttuple_common拼好后传tuple):tuplestore_putvalues
    • 用HeapTuple存tuple(直接传tuple):tuplestore_puttuple
  • 类型
    • 根据类型id和mod找出desc:lookup_rowtype_tupdesc
  • erh
    • 从erh扩展类型拿到紧凑tuple:expanded_record_get_tuple

1 :管道函数是什么,应用于什么场景

oracle支持pipelined函数,可以在函数定义时指定RETURN 集合类型 PIPELINED  来说明当前函数是管道函数。

管道函数最大的作用就是可以使一次返回的集合类型,变为 逐条返回,大大减少内存的使用。

例如:嵌套表类型outrecset是函数f_trans的返回值,普通函数只能组装好嵌套表outrecset(全部缓存在内存),一次性返回。如果嵌套表内容较多,可能会占用较大的内存空间。

如果使用管道函数,可以通过pipe row(嵌套表中的一行)来代替return语句,函数把嵌套表逐行返回给上层处理,无需缓存,降低内存使用。

ORACLE实例:

CREATE OR REPLACE PACKAGE refcur_pkg AUTHID DEFINER IS
  TYPE refcur_t IS REF CURSOR RETURN employees%ROWTYPE;
  TYPE outrec_typ IS RECORD (
    var_num    NUMBER(6),
    var_char1  VARCHAR2(30),
    var_char2  VARCHAR2(30)
  );
  TYPE outrecset IS TABLE OF outrec_typ;
  FUNCTION f_trans (p refcur_t) RETURN outrecset PIPELINED;
END refcur_pkg;
/
CREATE OR REPLACE PACKAGE BODY refcur_pkg IS
  FUNCTION f_trans (p refcur_t) RETURN outrecset PIPELINED IS
    out_rec outrec_typ;
    in_rec  p%ROWTYPE;
  BEGIN
    LOOP
      FETCH p INTO in_rec;  -- input row
      EXIT WHEN p%NOTFOUND;
      out_rec.var_num := in_rec.employee_id;
      out_rec.var_char1 := in_rec.first_name;
      out_rec.var_char2 := in_rec.last_name;
      PIPE ROW(out_rec);  -- first transformed output row
      out_rec.var_char1 := in_rec.email;
      out_rec.var_char2 := in_rec.phone_number;
      PIPE ROW(out_rec);  -- second transformed output row
    END LOOP;
    CLOSE p;
    RETURN;
  END f_trans;
END refcur_pkg;
/
SELECT * FROM TABLE (
  refcur_pkg.f_trans (
    CURSOR (SELECT * FROM employees WHERE department_id = 60)
  )
);

在PG中,普通的return语句也是需要一次性返回数据,但PG应该是参考ORACLE实现了return next的功能,也希望逐条返回数据(PG没有集合类型,已普通类型为例):

drop function f1;
create or replace function f1(in i int, out j int) returns setof int as $$
begin
  j := i+1;
  return next;
  j := i+2;
  return next;
  return;
end$$ language plpgsql;
select * from f1(42);
 j  
----
 43
 44

但在内核实现中,并不是逐条返回的,return next其实只起到了缓存数据的功能,总的数据集也是一次性返回SQL层的,和直接return没有区别(只有语法上的区别)。

所以PG的return setof函数并不能起到降低内存使用的效果。下面来分析具体过程。

2 return next实现

return next目前支持三类数据的返回,var、rec、rows return next也可以不加参数,返回值按out参数列表拼接

具体处理函数:exec_stmt_return_next

static int
exec_stmt_return_next(PLpgSQL_execstate *estate,
					  PLpgSQL_stmt_return_next *stmt)
{
	TupleDesc	tupdesc;
	int			natts;
	HeapTuple	tuple;
	MemoryContext oldcontext;

1 初始化tuple store

初始化总结

1 初始化的过程就是在构造Tuplestorestate,主要动作:

  • 给Tuplestorestate新的内存上下文ExecutorState
  • 记录不能随机访问:eflags = EXEC_FLAG_REWIND
  • 记录三个操作函数:copytup_heap、writetup_heap、readtup_heap

2 给estate->tuple_store_desc添加desc,desc来源:

  • 从执行计划节点中node(Tuplestorestate)拿到后,传入ExecMakeTableFunctionResult
  • ExecMakeTableFunctionResult组装ReturnSetInfo挂到fcinfo->resultinfo上
  • plpgsql_exec_function时从fcinfo中拿出ReturnSetInfo取到desc
  • plpgsql_estate_setup将取到的desc存入estate->rsi = rsi
#0  plpgsql_estate_setup (estate=0x7ffd81e2f850, func=0x2419028, rsi=0x7ffd81e2fb20, simple_eval_estate=0x0, simple_eval_resowner=0x0) at pl_exec.c:3972
#1  0x00007fe0a3992064 in plpgsql_exec_function (func=0x2419028, fcinfo=0x24da5a8, simple_eval_estate=0x0, simple_eval_resowner=0x0, procedure_resowner=0x0, atomic=true) at pl_exec.c:485
#2  0x00007fe0a39ac8f9 in plpgsql_call_handler (fcinfo=0x24da5a8) at pl_handler.c:277
#3  0x0000000000738829 in ExecMakeTableFunctionResult (setexpr=0x24e0b40, econtext=0x24e0a10, arGContext=0x24da490, expectedDesc=0x24e1110, randoMaccess=false) at execSRF.c:235
#4  0x0000000000753eed in FunctionNext (node=0x24e0800) at nodeFunctionscan.c:95
#5  0x000000000073a081 in ExecScanFetch (node=0x24e0800, acceSSMtd=0x753e3b <FunctionNext>, recheckMtd=0x754242 <FunctionRecheck>) at execScan.c:133
#6  0x000000000073a0f6 in ExecScan (node=0x24e0800, accessMtd=0x753e3b <FunctionNext>, recheckMtd=0x754242 <FunctionRecheck>) at execScan.c:182
#7  0x000000000075428c in ExecFunctionScan (pstate=0x24e0800) at nodeFunctionscan.c:270
#8  0x000000000073614e in ExecProcNodeFirst (node=0x24e0800) at execProcnode.c:464
#9  0x000000000072a08a in ExecProcNode (node=0x24e0800) at ../../../src/include/executor/executor.h:262
#10 0x000000000072cb80 in ExecutePlan (estate=0x24e05d8, planstate=0x24e0800, use_parallel_mode=false, operation=CMD_SELECT, sendTuples=true, numberTuples=0, direction=ForwardScanDirection, dest=0x24d5910, execute_once=true) at execMain.c:1632
#11 0x000000000072a6d1 in standard_ExecutorRun (queryDesc=0x23f1248, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:364
#12 0x000000000072a50b in ExecutorRun (queryDesc=0x23f1248, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:308
#13 0x0000000000997ba9 in PortalRunSelect (portal=0x2474a28, forward=true, count=0, dest=0x24d5910) at pquery.c:924
#14 0x0000000000997867 in PortalRun (portal=0x2474a28, count=9223372036854775807, isTopLevel=true, run_once=true, dest=0x24d5910, altdest=0x24d5910, qc=0x7ffd81e300b0) at pquery.c:768
#15 0x0000000000991408 in exec_simple_query (query_string=0x23c9518 "select * from f1(42);") at postgres.c:1238
#16 0x0000000000995a3e in PostgresMain (dbname=0x2400998 "postgres", username=0x23c5178 "mingjie") at postgres.c:4563
#17 0x00000000008d3cfe in BackendRun (port=0x23f7220) at postmaster.c:4396
#18 0x00000000008d3697 in BackendStartup (port=0x23f7220) at postmaster.c:4124
#19 0x00000000008d00b8 in ServerLoop () at postmaster.c:1791
#20 0x00000000008cf98a in PostmasterMain (argc=1, argv=0x23c3120) at postmaster.c:1463
#21 0x00000000007ada4b in main (argc=1, argv=0x23c3120) at main.c:200

分析:

	if (estate->tuple_store == NULL)
		exec_init_tuple_store(estate);
	tupdesc = estate->tuple_store_desc;
	natts = tupdesc->natts;
	if (stmt->retvarno >= 0)
	{
		PLpgSQL_datum *retvar = estate->datums[stmt->retvarno];
		switch (retvar->dtype)
		{

初始化函数exec_init_tuple_store

static void
exec_init_tuple_store(PLpgSQL_execstate *estate)
{
	ReturnSetInfo *rsi = estate->rsi;
	MemoryContext oldcxt;
	ResourceOwner oldowner;
// 从"SPI Proc"切换到"ExecutorState"
	oldcxt = MemoryContextSwitchTo(estate->tuple_store_cxt);
// 从“Portal”切换到"Portal"	
	oldowner = CurrentResourceOwner;
	CurrentResourceOwner = estate->tuple_store_owner;
// 进入tuplestore_begin_heap函数
	estate->tuple_store =
		tuplestore_begin_heap(rsi->allowedModes & SFRM_Materialize_Random, false, work_mem);
	CurrentResourceOwner = oldowner;
	MemoryContextSwitchTo(oldcxt);
// 给estate添加DESC,rsi->expectedDesc的来源?
	estate->tuple_store_desc = rsi->expectedDesc;
}

进入tuplestore_begin_heap

Tuplestorestate *
tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
{
// 输入false不允许随机访问、false、8192
	Tuplestorestate *state;
	int			eflags;
// eflags = EXEC_FLAG_REWIND
	eflags = randomAccess ?
		(EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND) :
		(EXEC_FLAG_REWIND);
// 进入tuple store模块开始初始化返回Tuplestorestate,注意他会直接拿当前的memcontext
	state = tuplestore_begin_common(eflags, interXact, maxKBytes);
// 返回的Tuplestorestate状态:
// state = {status = TSS_INMEM, eflags = 2, backward = false, interXact = false, 
//          truncated = false, availMem = 8372200, allowedMem = 8388608, tuples = 0,
//          myfile = 0x0, context = "ExecutorState", resowner = "Portal", copytup = 0x0, 
//          writetup = 0x0, readtup = 0x0, memtuples = 0x24f0d88, memtupdeleted = 0,
//          memtupcount = 0, memtupsize = 2048, growmemtuples = true, readptrs = 0x24e7a70, 
//          activeptr = 0, readptrcount = 1, readptrsize = 8, writepos_file = 0,writepos_offset = 0}
	state->copytup = copytup_heap;
	state->writetup = writetup_heap;
	state->readtup = readtup_heap;
	return state;
}

后面根据返回值的不同,进入几个分支。

在进入前,desc已经获取到了: tupdesc = estate->tuple_store_desc; natts = tupdesc->natts;

场景一:return next返回var类型

			case PLPGSQL_DTYPE_VAR:
				{
					PLpgSQL_var *var = (PLpgSQL_var *) retvar;
					Datum		retval = var->value;
					bool		isNull = var->isnull;
					Form_pg_attribute attr = TupleDescAttr(tupdesc, 0);
					if (natts != 1)
						ereport(ERROR,
								(errcode(ERRCODE_DATATYPE_MISMATCH),
								 errmsg("wrong result type supplied in RETURN NEXT")));
					// retval是一个eoh的头,后续处理需要一个1be的头(1be的data部分指向eoh)
					retval = MakeExpandedObjectReadOnly(retval, isNull, var->datatype->typlen);
					// 转成需要的类型
					retval = exec_cast_value(estate,
											 retval,
											 &isNull,
											 var->datatype->typoid,
											 var->datatype->atttypmod,
											 attr->atttypid,
											 attr->atttypmod);
					tuplestore_putvalues(estate->tuple_store, tupdesc, &retval, &isNull);
				}
				break;

执行tuplestore_putvalues保存元组

void
tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc,
					 Datum *values, bool *isnull)
{
	MinimalTuple tuple;
	MemoryContext oldcxt = MemoryContextSwitchTo(state->context);
	tuple = heap_form_minimal_tuple(tdesc, values, isnull);
// 记录使用了多少空间,修改state->availMem
	USEMEM(state, GetMemoryChunkSpace(tuple));
	tuplestore_puttuple_common(state, (void *) tuple);
	MemoryContextSwitchTo(oldcxt);
}
static void
tuplestore_puttuple_common(Tuplestorestate *state, void *tuple)
{
	TSReadPointer *readptr;
	int			i;
	ResourceOwner oldowner;
	state->tuples++;
	switch (state->status)
	{

内存态直接用数组缓存tuple,tuple使用的内存是在外层函数切换上下文申请的。

		case TSS_INMEM:
			readptr = state->readptrs;
			for (i = 0; i < state->readptrcount; readptr++, i++)
			{
				if (readptr->eof_reached && i != state->activeptr)
				{
					readptr->eof_reached = false;
					readptr->current = state->memtupcount;
				}
			}
			if (state->memtupcount >= state->memtupsize - 1)
			{
				(void) grow_memtuples(state);
			}
			state->memtuples[state->memtupcount++] = tuple;
			if (state->memtupcount < state->memtupsize && !LACKMEM(state))
				return;
			PrepareTempTablespaces();
			oldowner = CurrentResourceOwner;
			CurrentResourceOwner = state->resowner;
			state->myfile = BufFileCreateTemp(state->interXact);
			CurrentResourceOwner = oldowner;
			state->backward = (state->eflags & EXEC_FLAG_BACKWARD) != 0;
			state->status = TSS_WRITEFILE;
			dumptuples(state);
			break;
...

场景二:return next返回record类型

			case PLPGSQL_DTYPE_REC:
				{
					PLpgSQL_rec *rec = (PLpgSQL_rec *) retvar;
					TupleDesc	rec_tupdesc;
					TupleConversionMap *tupmap;

拿到record:

{dtype = PLPGSQL_DTYPE_REC, dno = 1, refname = 0x24db608 "r", lineno = 3, isconst = false, notnull = false, default_val = 0x0, datatype = {typname='foo'}, rectypeid = 17117, firstfield = -1, erh = 0x2509708}

  • 数据和desc都在erh中,列名在firstfield指向的位置。
  • 数据类型在datatype中:foo
  • 数据类型oid在rectypeid中:17117->foo
					if (rec->erh == NULL)
						instantiate_empty_record_variable(estate, rec);
					if (ExpandedRecordIsEmpty(rec->erh))
						deconstruct_expanded_record(rec->erh);
// "SPI Proc"切到"ExprContext"
					oldcontext = MemoryContextSwitchTo(get_eval_mcontext(estate));
// return erh->er_tupdesc;
					rec_tupdesc = expanded_record_get_tupdesc(rec->erh);
// 从保存的desc:rec_tupdesc转换到输出的desc:tupdesc,第一步:生成转换map
					tupmap = convert_tuples_by_position(rec_tupdesc,
														tupdesc,
														gettext_noop("wrong record type supplied in RETURN NEXT"));
					tuple = expanded_record_get_tuple(rec->erh);
					if (tupmap)
// 从保存的desc:rec_tupdesc转换到输出的desc:tupdesc,第二步:用map生成转换后的元组
						tuple = execute_attr_map_tuple(tuple, tupmap);
// 缓存元组
					tuplestore_puttuple(estate->tuple_store, tuple);
					MemoryContextSwitchTo(oldcontext);
				}
				break;

场景三:return next返回row类型

必须是两列以上的out参数,直接return next空,才会使用这段逻辑。

			case PLPGSQL_DTYPE_ROW:
				{
					PLpgSQL_row *row = (PLpgSQL_row *) retvar;
					oldcontext = MemoryContextSwitchTo(get_eval_mcontext(estate));
// 必须严格匹配tupdesc的类型,对不上则转换失败
					tuple = make_tuple_from_row(estate, row, tupdesc);
					if (tuple == NULL)
						ereport(ERROR,...)
					tuplestore_puttuple(estate->tuple_store, tuple);
					MemoryContextSwitchTo(oldcontext);
				}
				break;
			default:
				elog(ERROR, "unrecognized dtype: %d", retvar->dtype);
				break;
		}
	}

3 用例

drop function f1;
create or replace function f1(in i int, out j int) returns setof int as $$
begin
  j := i+1;
  return next;
  j := i+2;
  return next;
  return;
end$$ language plpgsql;
select * from f1(42);
----
CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');
CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
    r foo%rowtype;
BEGIN
    FOR r IN
        SELECT * FROM foo WHERE fooid > 0
    LOOP
        -- can do some processing here
        RETURN NEXT r; -- return current row of SELECT
    END LOOP;
    RETURN;
END;
$BODY$
LANGUAGE plpgsql;
SELECT * FROM get_all_foo();
--------
drop function f1(int);
create function f1(in i int, out j int, out k text) returns setof record as $$
begin
  j := i+1;
  k := 'foo';
  return next;
  j := j+1;
  k := 'foot';
  return next;
  return;
end$$ language plpgsql;
select * from f1(42);

以上就是Postgresql源码分析returns setof函数oracle管道pipelined的详细内容,更多关于Postgresql returns setof函数的资料请关注编程网其它相关文章!

--结束END--

本文标题: Postgresql源码分析returns setof函数oracle管道pipelined

本文链接: https://lsjlt.com/news/191864.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Postgresql源码分析returns setof函数oracle管道pipelined
    目录引言【功能】【代码】【实用函数】1 :管道函数是什么,应用于什么场景2 return next实现具体处理函数:exec_stmt_return_next1 初始化tuple s...
    99+
    2023-01-31
    Postgresql returns setof函数 oracle管道pipelined
  • FilenameUtils.getName 函数源码分析
    目录一、背景二、源码分析2.1 问题1:为什么需要 NonNul 检查 ?2.1.1 怎么检查的?2.1.2 为什么要做这个检查呢?2.2 问题2: 为什么不根据当前系统类型来获取分...
    99+
    2024-04-02
  • PostgreSQL的备份工具pg_basebackup源码中的主函数分析
    本篇内容主要讲解“PostgreSQL的备份工具pg_basebackup源码中的主函数分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PostgreSQL的...
    99+
    2024-04-02
  • vue parseHTML函数源码分析
    本文小编为大家详细介绍“vue parseHTML函数源码分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“vue parseHTML函数源码分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧...
    99+
    2023-07-02
  • Oracle vs PostgreSQL Develop(14) - 分析函数KEEP DENSE_RANK
    在Oracle中聚合函数KEEP ...
    99+
    2024-04-02
  • vue parseHTML函数源码分析AST
    这篇“vue parseHTML函数源码分析AST”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“vue ...
    99+
    2023-07-02
  • vue parseHTML函数源码分析start钩子函数
    这篇文章主要讲解了“vue parseHTML函数源码分析start钩子函数”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“vue parseHTML函数源码分析start...
    99+
    2023-07-02
  • Netty分布式pipeline管道传播outBound事件源码解析
    目录outbound事件传输流程这里我们同样给出两种写法跟到其write方法中:跟到findContextOutbound中回到write方法:继续跟invokeWrite0我们跟到...
    99+
    2024-04-02
  • Netty分布式pipeline管道异常传播事件源码解析
    目录传播异常事件简单的异常处理的场景我们跟到invokeChannelRead这个方法我还是通过两种写法来进行剖析跟进invokeExceptionCaught方法跟到invokeE...
    99+
    2024-04-02
  • Immutable.js到Redux函数式编程源码分析
    这篇文章主要介绍了Immutable.js到Redux函数式编程源码分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Immutable.js到Redux函数式编程源码分析文章都会有所收获,下面我们一起来看看吧...
    99+
    2023-07-05
  • Angular表单、管道、绑定、指令、通信和周期源码分析
    这篇文章主要介绍了Angular表单、管道、绑定、指令、通信和周期源码分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Angular表单、管道、绑定、指令、通信和周期源码分析文章都会有所收获,下面我们一起来看...
    99+
    2023-06-30
  • Vue3响应式函数toRef()对比toRefs()源码分析
    今天小编给大家分享一下Vue3响应式函数toRef()对比toRefs()源码分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下...
    99+
    2023-07-05
  • golang管道通信对函数执行效率的影响分析
    管道通信对 golang 函数效率的影响取决于:管道缓冲大小:较大的缓冲区提高效率,但增加内存消耗。管道并发程度:较高的并发程度提高效率,但增加 cpu 使用率。 Golang 管道通...
    99+
    2024-05-02
    golang 管道通信
  • Vue八大生命周期钩子函数源码分析
    本篇内容主要讲解“Vue八大生命周期钩子函数源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Vue八大生命周期钩子函数源码分析”吧!一.速识概念:我们把一个对象从生成(new)到被销毁(d...
    99+
    2023-07-05
  • Golang函数的接口和访问控制源码分析
    本文小编为大家详细介绍“Golang函数的接口和访问控制源码分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“Golang函数的接口和访问控制源码分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一、 接口在G...
    99+
    2023-07-06
  • C语言使用realloc函数实现通讯录源码分析
    目录一、ContactInit初始化二、ContactCheckCapacity检查通讯录内存是否够用三、ContactDistory释放动态开辟的空间四、源码一、ContactIn...
    99+
    2023-02-01
    C语言通讯录 C语言realloc函数实现通讯录
  • Vue中render函数调用时机与执行细节源码分析
    目录背景解析从$mount方法开始mountCompenent发生了什么?render函数的调用细节第一个参数:vm._renderProxy第二个参数:vm.$createElem...
    99+
    2024-04-02
  • Vue高级组件之函数式组件的使用场景与源码分析
    目录介绍使用场景源码分析总结介绍 Vue提供了一种可以让组件变为无状态、无实例的函数化组件。从原理上说,一般子组件都会经过实例化的过程,而单纯的函数组件并没有这个过程,它可以简单理...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作