返回顶部
首页 > 资讯 > 后端开发 > Python >python线程基础
  • 112
分享到

python线程基础

线程基础python 2023-01-31 07:01:32 112人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

1 并行和并发 1 并行,parallel 同时做某些事,可以互不干扰的同一时刻做几件事 如高速公路上的车道,同一时刻,可以有多个互不干扰的车运行在同一时刻,每条车道上可能同时有车辆在跑,是同时发生的概念 2 并发,concurre

1 并行和并发

1 并行,parallel

同时做某些事,可以互不干扰的同一时刻做几件事
如高速公路上的车道,同一时刻,可以有多个互不干扰的车运行
在同一时刻,每条车道上可能同时有车辆在跑,是同时发生的概念

2 并发,concurrency

也是同时做某事,但强调的是同一时段做了几件事。
并行是可以解决并发问题的。

2 并发的解决

1 队列,缓冲区

队列:排队就是队列,先进先出,解决了资源使用的问题。
缓冲区:排程的队列,其实就是一个缓冲地带,就是缓冲区
优先队列:对比较重要的事进行及时的处理,此处就是优先队列

2 争抢

只开一个窗口,有可能没秩序,也就是谁挤进去就给谁打饭
挤到窗口的人占据窗口,直到达到饭菜离开,其他人继续争抢,会有一个人占据窗口,可以视为定窗口,窗口就不能为其他人提供服务了,这是一种锁机制,抢到资源就上锁,排他性锁,其他人只能等候

争抢也是一种高并发解决方案,但是,不好,因为有人可能长时间抢不到。

3 预处理

一种提前加载用户需要的数据的思路,如预热,预加载等,缓存中常用
缓存的思想就是将数据直接拿到,进行处理。

4 并行

可通过购买更多的服务器,或开多线程,进行实现并行处理,来解决并发问题,这些都是水平扩展,

5 提速

提高单个CPU性能,或者单个服务器安装更多的CPU,但此和多个服务器相比成本较高

6 消息中间件

通过中间的缓冲器来解决并发问题,如RabbitMQ,activeMQ,RocketMQkafka 等,CDN也算是一种

3 进程和线程概念

1 进程和线程

在实现了线程的操作系统中,线程是操作系统能够运算调度的最小单位,他被包含在进程中,是进程中的实际运作单位,一个程序的执行实例就是一个进程


进程(process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础

2 进程和线程的关系

程序是源代码编译后的文件,而这些文件存放在磁盘上,当程序被操作系统加载到内存中,就是进程,进程中存放着指令和数据(资源),它也是线程的容器


linux进程有父进程,子进程,windows中进程之间是平等关系


线程有时候被称为轻量级进程(LWP),是程序执行的最小单元,一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成

3 进程,线程的理解

现代操作系统提出进程的概念,每一个进程都认为自己独占所有计算机硬件资源,进程就是独立王国,进程间不能随便共享数据
线程就是省份,同一个进程内的线程可以共享进程的资源,每一个线程拥有自己独立的堆栈。

4 python中的进程和线程

进程会启动一个解释器进程,线程共享一个解释器进程

两个解释器进程之间是没有任何关系的,不同进程之间是不能随便交互数据的
大多数数据都是跑在主线程上的

4 线程的状态

1 概述

1 运行态: 该时刻,该线程正在占用CPU资源
2 就绪态:可随时转换成运行态,因为其他线程正在运行而暂停,该线程不占CPU
3 阻塞态: 除非外部某些事情发生,否则线程不能运行
4 终止: 线程完成,或退出,或被取消

2 线程状态转换

python线程基础

先创建进程,然后再创建一个线程
等待资源的运行
阻塞不能直接进入运行状态,必须先进入就绪状态
运行中的线程是可以被取消的

1 Thread类

签名

def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs=None, *, daemon=None):

参数名及含义:
target:线程调用的对象,就是目标函数
name:为线程起名字(不同线程的名字可以重复,主要是通过线程TID进行区分的)
args:为目标函数传递参数,元祖
kwargs: 为目标函数关键字传参,字典

2 实例

1 基本创建

实例如下

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
def  test():
    for i in range(5):
        print (i)
    print ('Thread over')

# 实例化一个线程
t=threading.Thread(target=test)
t.start() # 启动一个线程

python线程基础

随着函数的执行完成,线程也就结束了,子线程不结束,则主线程一直存在,此时的主线程是等待状态


通过threading.Thread创建一个线程对象,target是目标函数,name可以指定名称,但是线程没有启动,需要调用start方法。
线程之所以能执行函数,是因为线程中就是执行代码,而最简单的封装就是哈函数,所以还是函数调用。


函数执行完成,线程就退出了,如果不让线程退出,则需要使用死循环

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
def  test():
    for i in range(5):
        print (i)
    print ('Thread over')

# 实例化一个线程
t=threading.Thread(target=test,name='test1')
t.start() # 启动一个线程
t=threading.Thread(target=test,name='test2')
t.start() # 启动一个线程

# 上述两个线程是并行处理,如果是一个CPU,则是假的平衡

结果如下

python线程基础

2 线程退出

Python中没有提供线程退出的方式,线程在下面情况时退出、
1 线程函数内语句执行完毕
2 线程函数中抛出未处理的异常

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
def  test():
    count=0
    while True:
        count+=1
        if  count==3:
            raise Exception('NUMBER')
        print (count)
# 实例化一个线程
t=threading.Thread(target=test,name='test1')
t.start() # 启动一个线程

异常导致的线程退出

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
def  test():
    count=0
    while True:
        count+=1
        if  count==3:
            raise Exception('NUMBER')
        print (count)
def test1():
    for i in range(5):
        time.sleep(0.1)
        print ('test1',i)
# 实例化一个线程
t=threading.Thread(target=test,name='test')
t.start() # 启动一个线程
t=threading.Thread(target=test1,name='test1')  #此处启用一个线程,看上述线程能否影响该线程的运行情况
t.start()

结果如下

python线程基础

python中线程没有优先级,没有线程组的概念,也不能被销毁,停止,挂起,也就没有恢复,中断了,上述的一个线程的异常不能影响另一个线程的运行,另一个线程的运行是因为其函数运行完成了

3 线程传参

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
def  test(count):
    while True:
        count+=1
        if  count==5:
            raise Exception('NUMBER')
        print (count)
# 实例化一个线程
t=threading.Thread(target=test,name='test',args=(0,))  #此处必须是元祖类型,否则会报错 
t.start() # 启动一个线程

python线程基础

4 线程相关属性

current_thread() 返回当前线程对象
main_thread() 返回主线程对象
active_count() 当前处于alive状态的线程个数
enumerate() 返回所有活着的线程的列表,不包括已经终止的线程和未开始的线程
get_ident() 返回当前线程的ID,非0整数

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
def  test(count):
    while True:
        print ("当前线程对象为{}当前处于活动的线程个数为{}".fORMat(threading.current_thread(),threading.active_count()))
        count+=1
        if  count==5:
            break
        print (count)
    print('当前活着的线程列表为:', threading.enumerate())

# 实例化一个线程
t=threading.Thread(target=test,name='test',args=(0,))  #此处必须是元祖类型,否则会报错
t.start() # 启动一个线程
print ('当前活着的线程列表为:',threading.enumerate())

print ('当前处于活动的线程个数为{} ,当前主线程为{},当前线程ID为{}'.format(threading.active_count(),threading.main_thread(),threading.get_ident()))

结果如下

python线程基础

其线程的执行不是顺序的,其调用取决于CPU的调度规则,而主线程在子线程所有子线程退出之前都是active状态。

5 线程实例的属性和方法(getname和setname)

name : 线程的名字,只是一个标识,其可以重名,getname() 获取,setname()设置这个名词

ident:线程ID,其是非0整数,线程启动后才会有ID,否则为None,线程退出,此ID依旧可以访问,此ID可以重复使用
is_alive() 返回线程是否活着

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
def  test(count):
    while True:
        count+=1
        if  count==5:
            break
        print (count)
    print ('当前线程name 为{},ID 为{}'.format(threading.current_thread().name,threading.current_thread().ident))

# 实例化一个线程
t=threading.Thread(target=test,name='test',args=(0,))  #此处必须是元祖类型,否则会报错
t.start() # 启动一个线程
print  ('主线程状态',threading.main_thread().is_alive())
print ('线程状态',threading.current_thread().is_alive())

结果如下

python线程基础

3 start 和run 的区别与联系

1 基本概述

start() 启动线程,每一个线程必须且只能被执行一次

run() 运行线程函数

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('本线程ID为{},主线程ID为{}'.format(threading.current_thread().ident,threading.main_thread().ident))
    print ('test')

t=MyThread(target=work,name='w')
t.start()

结果如下

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('本线程ID为{},主线程ID为{}'.format(threading.current_thread().ident,threading.main_thread().ident))
    print ('test')

t=MyThread(target=work,name='w')
t.run()

结果如下

python线程基础

结论如下:start 方法的调用会产生新的线程,而run的调用是在主线程中运行的,且run的调用只会调用自己的方法,而start 会调用自己和run方法

2 run 和 start 调用次数问题

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.start()
time.sleep(3)
t.start() #再次启用线程

python线程基础

上述可知,线程在start是会调用start和run属性运行,且其不能再次启动线程一次。


调用run方法

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.run()
time.sleep(3)
t.run()

结果如下

python线程基础

run 方法也只能调用一次

3 start和run 合用

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.run()
time.sleep(3)
t.start()

结果如下

python线程基础

上述结果表明,run和start的调用不能出现在同一个线程中

4 解决同一代码中调用问题

重新构建一个新线程并启动

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.start()
t=MyThread(target=work,name='w1')
t.start()

结果如下

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.run()
t=MyThread(target=work,name='w1')
t.run()

结果如下

python线程基础

5 run 和start 的作用

注释继承的run方法

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        super().start()

    def run(self) -> None:
        print ('run',self)
       # super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.start()
t=MyThread(target=work,name='w1')
t.start()

结果如下

python线程基础

禁用start方法

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import  time
class MyThread(threading.Thread):  # 自定义一个类,其继承Thread的相关start和run属性
    def start(self) -> None:
        print ('start',self)
        #super().start()

    def run(self) -> None:
        print ('run',self)
        super().run()
def  work():
    print ('test')

t=MyThread(target=work,name='w')
t.start()
t=MyThread(target=work,name='w1')
t.start()

python线程基础

结论:start()函数会调用run函数,而run()函数是用来运行函数的,start是创建线程的,在执行start()时run()必不可少,而在运行run()时因为不需要调用start(),因此其是非必须的。


start 会启用新的线程,其使用可以形成多线程,而run()是在当前线程中调用函数,不会产生新的线程,其均不能多次调用

4 多线程概述

一个进程中如果有多个线程,就是多线程,实现一种并发

线程的调度任务是操作系统完成的

没有开新的线程,这就是普通的函数调用,所以执行完t1.run(),然后执行t2.run(),这不是多线程

当使用start方法启动线程时,进程内有多个活动的线程并行工作,就是多线程

一个进程中至少有一个线程,作为程序的入口,这个线程就是主线程,一个进程至少有一个主线程

其他线程称为工作线程

python中的线程没有优先级的概念

5 线程安全

1 问题

此实例需要在ipython 中运行

python线程基础

此处的print 会被打断,其中间有空格,此种情况称为线程不安全。
print 函数的执行分为两步:
1 打印字符串
2 换行,就在这之间发生了线程切换,其不安全

2 解决方式:

1 通过字符串的拼接来完成

python线程基础

2 通过logging模块来处理,其输出过程中是不被打断的

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO 
def woker():
    for  x  in range(10):
        msg="{} is running".format(threading.current_thread())
        logging.info(msg)  # 日志打印 
for x  in range(5):
    t = threading.Thread(target=woker,name="work-{}".format(x)).start()

结果如下

python线程基础

简单测试的时候使用print,在其他应用的时候必须使用logging,其是针对日志打印使用的技术,日志打印过程中是不能被中断的,

6 daemon 线程和 non-daemon线程

1 概述

这里的daemon线程不是Linux中的守护进程


进程靠线程执行代码,至少一个主线程,其他线程是工作线程
主线程是第一个启动的线程
父线程: 如果线程A中启动了一个线程B,A就是B的父线程
子线程: B就是A的子线程

在python中,构建线程的时候,可以设置daemon属性,这个属性必须在start方法之前设置好,

相关源码

python线程基础

此处表明。若传入的daemon 不是None,则其表示默认传入的值,否则,及若不传入,则表示使用当前线程的daemon

主线程是non-daemon线程,及daemon=False

活着线程的列表的源码

python线程基础

此处表示活着的线程列表中一定会包含主线程,

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO
def woker():
    for  x  in range(10):
        msg="{} is running".format(threading.current_thread())
        logging.info(msg)  # 日志打印

threading.Thread(target=woker,name="work-{}".format(0)).start()
print  ('ending')
print (threading.enumerate()) #主线程因为其他线程的执行,因此其处于等待状态

结果如下

python线程基础

2 daemon线程

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO
def woker():
    for  x  in range(10):
        msg="{} is running".format(threading.current_thread())
        logging.info(msg)  # 日志打印

threading.Thread(target=woker,name="work-{}".format(0),daemon=True).start() #主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型
# 的线程,则会等待其执行完成再退出,若是遇见都是daemon类型线程,则直接退出,
print  ('ending')
print (threading.enumerate()) #主线程因为其他线程的执行,因此其处于等待状态

结果如下

python线程基础

上述线程是daemon线程,因此主线程不会等待其完成后再关闭

3 non-daemon 和 damon

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
import time
logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO
def woker():
    for  x  in range(10):
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印
        time.sleep(0.5)  #此处配置延迟,检验是否在non-daemon线程执行完成后及会直接关闭的情况

threading.Thread(target=woker,name="work-{}".format(0),daemon=True).start() #主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型
# 的线程,则会等待其执行完成再退出,若是遇见都是daemon类型线程,则直接退出,、
def woker1():
    for  x  in ['a','b','c','d']:
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印

threading.Thread(target=woker1,name="work-{}".format(0)).start() #主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型,则不会终止,
# 此处默认从父线程中获取属性,父线程中是non-daemon,因此此属性会一直运行,上面的会关闭,但不会影响这个

print  ('ending')
print (threading.enumerate()) #主线程因为其他线程的执行,因此其处于等待状态

结果如下

python线程基础

结果表示,当non-daemon线程执行完成后,不管damon是否执行完成,主线程将直接终止,不会再次运行。

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
import time
def woker1():
    for  x  in ['a','b','c','d']:
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印

logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO
def woker():

    for  x  in range(10):
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印
        time.sleep(1)  # 此处配置1秒延时,使得主线程看不到孙子线程的non-daemon就关闭
    T3=threading.Thread(target=woker1,name="woker{}".format(10),daemon=False)  #此处启动的线程默认是non-daemon线程,但由于其父线程是daemon
    # 及就是下面的T1线程,当T2线程执行完毕后线程扫描,发现没non-daemon线程,则直接退出,此时将不会继续执行T1 的子线程T3,虽然T3是non-daemon。因为其未启动
    T3.start()

T1=threading.Thread(target=woker,name="work-{}".format(0),daemon=True)#主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型
T1.start()
# 的线程,则会等待其执行完成再退出,若是遇见都是daemon类型线程,则直接退出,

T2=threading.Thread(target=woker1,name="work-{}".format(0)) #主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型,则不会终止,
# 此处默认从父线程中获取属性,父线程中是non-daemon,因此此属性会一直运行,上面的会关闭,但不会影响这个
T2.start()
print  ('ending')
print (threading.enumerate()) #主线程因为其他线程的执行,因此其处于等待状态

结果如下

python线程基础

可能孙子线程还没起来,主线程只看到了daemon线程。则直接进行关闭,

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
import time
def woker1():
    for  x  in ['a','b','c','d']:
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印

logging.basicConfig(level=logging.INFO)  #定义基本级别,默认是WARNING,此处修改为INFO
def woker():

    for  x  in range(10):
        msg="{}  {} is running".format(x,threading.current_thread())
        logging.info(msg)  # 日志打印
        # time.sleep(1)  # 此处配置1秒延时,使得主线程看不到孙子线程的non-daemon就关闭
    T3=threading.Thread(target=woker1,name="woker{}".format(10),daemon=False)  #此处启动的线程默认是non-daemon线程,但由于其父线程是daemon
    # 及就是下面的T1线程,当T2线程执行完毕后线程扫描,发现没non-daemon线程,则直接退出,此时将不会继续执行T1 的子线程T3,虽然T3是non-daemon。因为其未启动
    T3.start()

T1=threading.Thread(target=woker,name="work-{}".format(0),daemon=True)#主线程一般会在一定时间内扫描属性列表,若其中有non-daemon类型
T1.start()
# 的线程,则会等待其执行完成再退出,若是遇见都是daemon类型线程,则直接退出,

结果如下

python线程基础

也可能是孙子线程已经起来了,主线程看到了non-daemon线程,因此未直接关闭,而是等待孙子线程执行完成后才进行关闭操作


相关属性

daemon 属性 表示线程是否是daemon线程,这个值必须在start()之前设置,否则会引发异常
isDaemon() 是否是daemon线程
setDaemon() 设置为daemon线程,必须在start方法之前设置


总结

python中父线程和子线程没有直接的管理关系

python主线程是否杀掉线程,看的是daemon,若只有daemon,则直接删掉所有线程,自己结束,若还有子线程是non-daemon,则会等待

如果想让一个线程完整执行,则需要定义non-daemon属性

daemon 属性,必须在start 之前设置,否则会引发runtimeError异常

线程具有daemon属性,可以显示设置为True或False,也可以不设置,则去默认值None
如果不设置daemon,就区当前线程的daemon来设置它

主线程是non-daemon线程,及daemon=False

从主线程创建的所有线程不设置daemon属性,则默认都是daemon=False,也就是non-daemon线程

python程序在没有活着的non-daemon线程运行时推出,也就是剩下的只有daemon线程,主线程才能退出,否则主线程就只能等待。


应用场景:
不关心什么时候开始,什么时候结束的时候使用daemon,否则可以使用non-daemon

Linux的daemon是进程级别的,而python的daemon是线程级别的,其之间没有可比性的

daemon和non-daemon 启动的时候,需要注意启动的时机。


简单来说,本来并没有daemon thread,为了简化程序员工作,让他们不去记录和管理那些后台线程,创造了daemon thread 的概念,这个概念唯一的作用就是,当你把一个线程设置为daemon时,它会随着主线程的退出而退出。


主要应用场景:
1 后台任务,发送心跳包,监控,这种场景较多。
2 主线程工作才有用的线程,如主线程中维护了公共资源,主线程已经清理了,准备退出,而工作线程使用这些资源工作也没意义了,一起退出最合适
3 随时可以被终止的线程

7 join

join是标准的线程函数之一,其含义是等待,谁调用join,谁等待

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import logging # 导入日志打印模块
import time
def  foo(n):
    for i in range(n):
        print (i)
        time.sleep(0.5)
t1=threading.Thread(target=foo,args=(10,),daemon=True)
t1.start()  # 默认情况下,此线程只能执行少量此,一般不能全部执行
t1.join()  # 通过join方法将原本不能执行完成的线程执行完成了

结果如下

python线程基础

使用join方法,daemon线程执行完成后,主线程才退出,

join(timeout=None),是线程的标准方法之一。
timeout参数指定调用者等待多久,没有设置超时,则就一直等到被调用线程结束,调用谁的join方法,就是join谁,谁就要等待。

一个线程中调用另一个线程的join方法,调用者将被阻塞,直到被调用者线程终止,一个线程可以被join多次

如果在一个daemon C 线程中,对另一个daemon线程D 使用了join方法,只能说明C要等待D,主线程退出,C和D是否结束,也不管他们谁等待谁,都要被杀掉。

join 方法,支持使用等待,但其会导致多线程变成单线程,其会影响正常的运行,因此一般会将生成的线程加入到列表中,进行遍历得到对应线程进行计算。

8 threading.local 类

python 提供了threading.local 类,将这个实例化得到一个全局对象,但是不同的线程,这个对象存储的数据其他线程看不到

1 局部变量

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
def  worker():
    x=0  # 此处是局部变量
    for i in range(10):
        time.sleep(0.0001)
        x+=1
    print (threading.current_thread(),x)
for i in range(10):
    threading.Thread(target=worker).start()

结果如下

python线程基础

2 全局变量

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
x = 0  # 此处是一个全局变量
def  worker():
    for i in range(10):
        global x
        time.sleep(0.0001)
        x+=1
    print (threading.current_thread(),x)
for i in range(10):
    threading.Thread(target=worker).start()

结果如下

python线程基础

局部变量本身具有隔离效果,一旦变成全局变量,则所有的线程都将能够访问和修改。

3 使用类处理

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
class  A:
    def __init__(self,x):
        self.x=x
a=A(0)
def  worker():
    for i in range(100):
        a.x=0
        time.sleep(0.0001)
        a.x+=1
    print (threading.current_thread(),a.x)
for i in range(10):
    threading.Thread(target=worker).start()

结果如下

python线程基础

其不同线程的TID是不同的,可通过不同线程的TID进行为键,其结果为值,便可解决此种乱象

4 threading.local

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
a=threading.local()  # 做到隔离,通过TID进行数据的隔离处理不同线程的不同数值问题
def  worker():
    a.x = 0
    for i in range(100):
        time.sleep(0.0001)
        a.x+=1
    print (threading.current_thread(),a.x)
for i in range(10):
    threading.Thread(target=worker).start()

结果如下

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
a=threading.local()  # 做到隔离,通过TID进行数据的隔离处理不同线程的不同数值问题
def  worker():
    a.x = 0
    for i in range(100):
        time.sleep(0.0001)
        a.x+=1
    print (threading.current_thread(),a.x)
    print (threading.get_ident(),a.__dict__) #此处打印线程TID和字典
for i in range(10):
    threading.Thread(target=worker).start()

结果如下

python线程基础

5 源代码

python线程基础
python线程基础

self.key 是 前面的加上id
通过字典实现,线程ID的地址是唯一的,但跨进程的线程ID 不一定是相同的

进程中的线程地址可能是一样的。每一个进程都认为自己是独占资源的,但不一定就是 。

6 实践

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
X='abc'
ctx=threading.local()
ctx.x=123
def work():
    print (X)
    print (ctx)
    print (ctx.x)  #此时的字典中ctx此ctx.x属性,因此其不能打印,其是在线程内部,每个dict对应的值都是独立的
    print ('end')
threading.Thread(target=work).run()  # 此处是本地线程调用,则不会影响
threading.Thread(target=work).start()

结果如下

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import time
X='abc'
ctx=threading.local()
ctx.x=123
def work():
    print (X)
    print (ctx)
    ctx.x=100 #内部线程中定义一个局部变量,则可以执行和被调用
    print (ctx.x)  #此时的ctx 无此属性,因此其不能打印,其是在线程内部,
    print ('end')
threading.Thread(target=work).run()  # 此处是本地线程调用,则不会影响
threading.Thread(target=work).start()

结果如下

python线程基础

7 结论

threading.local类构件了一个大字典,其元素的每一线程实例的地址为Key和线程的引用线程单独的字典的映射(栈),通过threading.local 实例就可以在不同的线程中,安全的使用线程独有的数据,做到了线程间数据的隔离,如同本地变量一样

8 延迟执行Timter

1 源码

python线程基础

上述可看到,其第一个字段便是时间

2 基本实例

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import datetime
start_time=datetime.datetime.now()

def  add(x,y):
    print   (x+y)
    print("函数执行时间为{}".format((datetime.datetime.now() - start_time).total_seconds()))

t=threading.Timer(3,add,args=(3,4))
t.start()  #此处会延迟3秒执行

结果如下

python线程基础

此处是延迟执行线程,而不是延迟执行函数,本质上还是线程

3 t.cancel() 线程的删除

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import datetime
import time
def  add(x,y):
    print   (x+y)
t=threading.Timer(6,add,args=(3,4)) # 此处表示6秒后出结果
t.start()
time.sleep(5) 
t.cancel() #线程被删除

只要是没真正执行的线程,都能够被cancel删除

python线程基础

#!/usr/bin/poython3.6
#conding:utf-8
import  threading
import datetime
import time
def  add(x,y):
    time.sleep(5)
    print   (x+y)
t=threading.Timer(6,add,args=(3,4)) # 此处表示6秒后出结果
t.start()
time.sleep(10)
t.cancel()

结果如下
python线程基础

start方法后,timer对象会处于等待状态,等待interval之后,开始执行function函数,如果在执行函数之前等待阶段,使用了cancel方法,就会跳过执行函数结束。
如果线程已经开始执行了,则cancel就没有任何效果了

4 总结

Timer是线程Thread的子类,就是线程类,具有线程的能力和特征
它的实例是能够延迟执行目标函数的线程,在真正的执行目标函数之前,都可以cancel它 。

--结束END--

本文标题: python线程基础

本文链接: https://lsjlt.com/news/191264.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python线程基础
    1 并行和并发 1 并行,parallel 同时做某些事,可以互不干扰的同一时刻做几件事 如高速公路上的车道,同一时刻,可以有多个互不干扰的车运行在同一时刻,每条车道上可能同时有车辆在跑,是同时发生的概念 2 并发,concurre...
    99+
    2023-01-31
    线程 基础 python
  • python多线程基础
    一、python多线程基础    python多线程主要涉及两个类:thread和threading,后者实际是对前者的封装,由于threading提供了更完善的锁机制,运用场景更多,重点学习了这个类的使用。threading.Thread...
    99+
    2023-01-31
    多线程 基础 python
  • python基础学习20----线程
    什么是线程   线程,有时被称为轻量进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派...
    99+
    2023-01-30
    线程 基础 python
  • c#多线程之线程基础
    目录一、简介二、创建线程三、暂停线程四、线程等待五、终止线程六、检测线程状态七、线程优先级八、前台线程和后台线程九、向线程传递参数十、使用C# Lock 关键字十一、使用Monito...
    99+
    2024-04-02
  • Python基础学习之认识线程
    目录一、什么是线程?二、再来解释线程的代码三、线程触发业务函数,线程调用业务函数四、多了一个线程是哪个?五、总结一、什么是线程? 我们知道工人都是同时在工厂工作,复制各自的工作的。他...
    99+
    2024-04-02
  • java——多线程基础
    目录多线程使用场景:线程和进程区别:创建线程的方式:Thread类的有关方法:线程的同步:模拟火车站售票程序线程的同步:synchronized1. 同步代码块:2. synchro...
    99+
    2024-04-02
  • Java多线程基础
    目录一、线程二、创建多线程的方式1、继承Thread类实现多线程2、实现Runnable接口方式实现多线程3、Callable接口创建线程三、线程的生命周期与状态四、线程的执行顺序1...
    99+
    2024-04-02
  • 深入了解Python的多线程基础
    目录线程多线程Python多线程创建线程GIL锁线程池总结线程 线程(Thread),有时也被称为轻量级进程(Lightweight Process,LWP),是操作系统独⽴调度和分...
    99+
    2024-04-02
  • JAVA多线程线程安全性基础
    目录线程安全性什么是线程安全的代码什么是线程安全性 总结线程安全性 一个对象是否需要是线程安全的,取决于它是否被多个线程访问,而不取决于对象要实现的功能 什么是线程安全的代码 核心:...
    99+
    2024-04-02
  • 【Java】Java多线程编程基础
    文章目录 1. 进程与线程1.1 进程与线程的基本认识1.1.1 进程(Process)1.1.2 线程(Thread) 1.2 为什么会有线程1.2.1 以看视频为例 2. ...
    99+
    2023-10-03
    java python 开发语言
  • Python 编程基础
    数据类型 None 值 整型 浮点型 布尔类型 True,False 字符串 元组 tuple(),有序,不可变 例: t1 = (1,)  t2 = (1,'Hello',1.0,True) 列表 list[],有序,可变 例...
    99+
    2023-01-31
    基础 Python
  • Python基础教程
    6.4.5 参数收集的逆过程 假设有如下函数: def add(x,y): return x+y 比如说有个包含由两个相加的数字组成的元组: params = (1,2) 使用*运算符对参数进行“分配”,不过是在调用而不是在定义时使用: ...
    99+
    2023-01-31
    基础教程 Python
  • Java多线程——基础概念
    目录java多线程并发与并行:多线程使用场景:创建线程的方式:Thread类的有关方法:线程的同步:       ...
    99+
    2024-04-02
  • java多线程:基础详解
    目录Java内存模型主内存和工作内存的交互命令内存模型的原子性内存模型的可见性内存模型的有序性指令重排优化的底层原理valatile原理volatile与加锁的区别先行发生原则线程的...
    99+
    2024-04-02
  • python开发之thread线程基础实例入门
    本文实例讲述了python开发之thread线程基础。分享给大家供大家参考,具体如下: 说到线程,我们要知道啥是串行,啥是并行程序 举个例子: 串行程序,就是一个一个的执行程序 #python thre...
    99+
    2022-06-04
    线程 实例 入门
  • py基础---多线程、多进程、协程
    目录 Python基础__线程、进程、协程 1、什么是线程(thread)? 2、什么是进程(process)? 3、进程和线程的区别...
    99+
    2023-01-31
    多线程 进程 基础
  • JAVA基础:线程池的使用
    目录 1.概述 2.线程池的优势​​​​​​​ 2.1.线程池为什么使用自定义方式? 2.2.封装的线程池工具类有什么好处? 3.线程池的七大参数 3.线程池的创建 3.1. 固定数量的线程池 3.2. 带缓存的线程池 3.3. 执⾏定时任...
    99+
    2023-09-08
    java jvm 开发语言 多线程 线程池
  • Java多线程Thread基础学习
    目录1. 创建线程   1.1 通过构造函数:public Thread(Runnable target, String name){}  或:publ...
    99+
    2023-05-17
    Java多线程 Java 多线程Thread
  • 【Java基础】线程同步类 CountDownLatch
    ​ 关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、人工智能等,希望大家多多支持。 目录 一、导读二、概览2.1 作用2.2 使用场景2.3 ...
    99+
    2023-08-16
    java 开发语言 android 面试
  • Python Numpy-基础教程
    目录 1. 为什么要学习numpy 2. Numpy基本用法 2.1. 创建np.ndarry 2.2. Indexing and ...
    99+
    2023-01-30
    基础教程 Python Numpy
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作