返回顶部
首页 > 资讯 > 数据库 >PostgreSQL 16 新特性之正态分布随机数函数的示例
  • 412
分享到

PostgreSQL 16 新特性之正态分布随机数函数的示例

摘要

random() 函数可以用于生成一个大于等于 0 小于等于 1 的随机数,生成的数据遵循平均分布。不过在实际环境中,更多的数据则是遵循正态分布。postgresql 提供了一个扩展模块 tablefunc,可以用于生成

random() 函数可以用于生成一个大于等于 0 小于等于 1 的随机数,生成的数据遵循平均分布。不过在实际环境中,更多的数据则是遵循正态分布。postgresql 提供了一个扩展模块 tablefunc,可以用于生成遵循正态分布的随机数;或者我们也可以创建存储函数来模拟正态分布的随机数。

考虑到它的实用性,Postgresql 16 新增了一个内置的 random_nORMal() 函数,用于生成这种随机数。我们使用该函数生成 10 个随机数:

select random_normal() as v from generate_series(1, 10);
v                  |
-------------------+
 1.9147182783615317|
-1.7265731892046994|
-0.9601043210986459|
 -1.481551351102244|
-1.3763031483133177|
0.11872324455736474|
 0.9016843380853512|
 0.1288806844184827|
-1.6392171916791691|
0.33770959079074697|

默认参数调用时,random_normal() 函数生成的随机数遵循标准正态分布(均值为 0,标准差为 1)。

以下示例生成的随机数遵循均值为 1、标准差为 5 的正态分布:

select random_normal(1, 5) as v from generate_series(1, 10);
v                  |
-------------------+
-0.4529440542028027|
  5.442251124798599|
  6.307851828542196|
  4.122825670258253|
 -2.186242122101672|
  4.767936509571358|
  5.172144288566877|
 -3.761475521327373|
-2.6431751259304193|
0.19249449162595722|

接下来我们验证一下该函数生成的数据是否遵循正态分布。

SELECT round(random_normal(1, 0.5)::numeric, 1) AS v,
       count(*),
       repeat('#', (count(*) / 100)::integer)
FROM generate_series(1, 100000)
GROUP BY v
ORDER BY v;

v   |count|repeat                                                                         |
----+-----+-------------------------------------------------------------------------------+
-1.2|    1|                                                                               |
-1.1|    1|                                                                               |
-1.0|    3|                                                                               |
-0.9|    9|                                                                               |
-0.8|   17|                                                                               |
-0.7|   21|                                                                               |
-0.6|   55|                                                                               |
-0.5|   98|                                                                               |
-0.4|  132|#                                                                              |
-0.3|  248|##                                                                             |
-0.2|  521|#####                                                                          |
-0.1|  728|#######                                                                        |
 0.0| 1090|##########                                                                     |
 0.1| 1586|###############                                                                |
 0.2| 2203|######################                                                         |
 0.3| 2975|#############################                                                  |
 0.4| 3878|######################################                                         |
 0.5| 4840|################################################                               |
 0.6| 5778|#########################################################                      |
 0.7| 6670|##################################################################             |
 0.8| 7299|########################################################################       |
 0.9| 7720|#############################################################################  |
 1.0| 7960|###############################################################################|
 1.1| 7794|#############################################################################  |
 1.2| 7271|########################################################################       |
 1.3| 6745|###################################################################            |
 1.4| 5796|#########################################################                      |
 1.5| 4796|###############################################                                |
 1.6| 3904|#######################################                                        |
 1.7| 3034|##############################                                                 |
 1.8| 2300|#######################                                                        |
 1.9| 1567|###############                                                                |
 2.0| 1175|###########                                                                    |
 2.1|  710|#######                                                                        |
 2.2|  454|####                                                                           |
 2.3|  267|##                                                                             |
 2.4|  164|#                                                                              |
 2.5|   94|                                                                               |
 2.6|   56|                                                                               |
 2.7|   23|                                                                               |
 2.8|    7|                                                                               |
 2.9|    8|                                                                               |
 3.0|    2|                                                                               |

从上面的图形可以看出,函数返回的结果是一个正态分布。我们还可以进一步通过均值和标准差进行验证:

WITH RECURSIVE d(n, v) AS (
  SELECT 1 AS n, random_normal(1, 0.5) AS v
  UNION ALL
  SELECT n+1, random_normal(1, 0.5) FROM d WHERE n<100000
)
SELECT count(*), avg(v), stddev(v)
FROM d;

count |avg               |stddev             |
------+------------------+-------------------+
100000|1.0009116232651825|0.49890904328727353|

到此这篇关于PostgreSQL 16 新特性之正态分布随机数函数的文章就介绍到这了,更多相关PostgreSQL随机数函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

您可能感兴趣的文档:

--结束END--

本文标题: PostgreSQL 16 新特性之正态分布随机数函数的示例

本文链接: https://lsjlt.com/news/190369.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作