Python 官方文档:入门教程 => 点击学习
python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用。multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能。使用这些组件,可以方便地编写多进
python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用。multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能。使用这些组件,可以方便地编写多进程并发程序。
多进程实例:
import os
from multiprocessing import Process
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
print("\n\n")
def f(name):
info('\033[31;1mfunction f\033[0m')
print('hello', name)
if __name__ == '__main__':
info('\033[32;1mmain process line\033[0m')
p = Process(target=info, args=('bob',))
p.start()
p.join()
实例化一个Process必须要指定target和args。target是新的进程的入口方法,可以认为是main方法。args是该方法的参数列表。启动进程类似于启动Thread,必须要调用start方法。也可以继承Process,覆盖run方法,在run方法中实现该进程的逻辑。调用join方法会阻塞当前调用进程,直到被调用进程运行结束。
手工终止一个进程可以调用terminate方法,在UNIX系统中,该方法会发送SIGTERM信号量,而在windows系统中,会借助TerminateProcess方法。需要注意的是,exit处理逻辑并不会被执行,该进程的子进程不会被终止,他们只会变成孤儿进程。
Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])
if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p2 = Process(target=f, args=(q,))
p.start()
p2.start()
print('data1:',q.get()) # prints "[42, None, 'hello']"
print('data2:',q.get())
p.join()
Pipes
Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
from multiprocessing import Process, Pipe
def send(conn):
conn.send("Hello World")
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=send, args=(child_conn,))
p.start()
print(parent_conn.recv())
Managers
from multiprocessing import Process, Manager
def f(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.append('a')
print(l)
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list(range(5))
p_list = []
for i in range(10):
p = Process(target=f, args=(d, l))
p.start()
p_list.append(p)
for res in p_list:
res.join()
print(d)
print(l)
进程同步
multiprocessing包提供了Condition, Event, Lock, RLock, Semaphore等组件可用于同步。下面是使用Lock的一个示例:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
try:
print('hello world', i)
finally:
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
apply
apply_async
from multiprocessing import Process,Pool,freeze_support
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print('-->exec done:',arg)
if __name__ == '__main__':
freeze_support()
pool = Pool(3)
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar) # 异步
#pool.apply(func=Foo, args=(i,)) # 同步无回调机制
print('end')
pool.close()
pool.join() #进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
--结束END--
本文标题: Python进程
本文链接: https://lsjlt.com/news/186426.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0