Python 官方文档:入门教程 => 点击学习
最大堆是指最大的元素在堆顶的堆。python自带的heapq模块实现的是最小堆,没有提供最大堆的实现。虽然有些文章通过把元素取反再放入堆,出堆时再取反,把问题转换为最小堆问题也能间接实现最大堆,但是这样的实现只适合数值型的元素,不适合自定
最大堆是指最大的元素在堆顶的堆。
python自带的heapq模块实现的是最小堆,没有提供最大堆的实现。虽然有些文章通过把元素取反再放入堆,出堆时再取反,把问题转换为最小堆问题也能间接实现最大堆,但是这样的实现只适合数值型的元素,不适合自定义类型。
下面给出实现代码:
# -*- coding: UTF-8 -*-
import random
class MaxHeap(object):
def __init__(self):
self._data = []
self._count = len(self._data)
def size(self):
return self._count
def isEmpty(self):
return self._count == 0
def add(self, item):
# 插入元素入堆
self._data.append(item)
self._count += 1
self._shiftup(self._count-1)
def pop(self):
# 出堆
if self._count > 0:
ret = self._data[0]
self._data[0] = self._data[self._count-1]
self._count -= 1
self._shiftDown(0)
return ret
def _shiftup(self, index):
# 上移self._data[index],以使它不大于父节点
parent = (index-1)>>1
while index > 0 and self._data[parent] < self._data[index]:
# swap
self._data[parent], self._data[index] = self._data[index], self._data[parent]
index = parent
parent = (index-1)>>1
def _shiftDown(self, index):
# 上移self._data[index],以使它不小于子节点
j = (index << 1) + 1
while j < self._count :
# 有子节点
if j+1 < self._count and self._data[j+1] > self._data[j]:
# 有右子节点,并且右子节点较大
j += 1
if self._data[index] >= self._data[j]:
# 堆的索引位置已经大于两个子节点,不需要交换了
break
self._data[index], self._data[j] = self._data[j], self._data[index]
index = j
j = (index << 1) + 1
# 元素是数值类型
def testIntValue():
for iTimes in range(10):
iLen = random.randint(1,300)
allData= random.sample(range(iLen*100), iLen)
# allData = [1, 4, 3, 2, 5, 7, 6]
# iLen = len(allData)
print('\nlen =',iLen)
oMaxHeap = MaxHeap()
print('_data:\t ', allData)
arrDataSorted = sorted(allData, reverse=True)
print('dataSorted:', arrDataSorted)
for i in allData:
oMaxHeap.add(i)
heapData = []
for i in range(iLen):
iExpected = arrDataSorted[i]
iActual = oMaxHeap.pop()
heapData.append(iActual)
print('{0}, expected: {1}, actual: {2}'.fORMat(iExpected==iActual, iExpected, iActual))
assert iExpected==iActual, ""
print('dataSorted:', arrDataSorted)
print('heapData: ',heapData)
# 元素是元祖类型
def testTupleValue():
for iTimes in range(10):
iLen = random.randint(1,300)
listData= random.sample(range(iLen*100), iLen)
# listData = [1, 4, 3, 2, 5, 7, 6]
# iLen = len(listData)
# 注意:key作为比较大小的关键
allData = dict(zip(listData, [str(e) for e in listData]))
print('\nlen =',iLen)
print('allData: ', allData)
oMaxHeap = MaxHeap()
arrDataSorted = sorted(allData.items(), key=lambda d:d[0], reverse=True)
# arrDataSorted = sorted(allData, reverse=True)
print('dataSorted:', arrDataSorted)
for (k,v) in allData.items():
oMaxHeap.add((k,v)) # 元祖的第一个元素作为比较点
heapData = []
for i in range(iLen):
iExpected = arrDataSorted[i]
iActual = oMaxHeap.pop()
heapData.append(iActual)
print('{0}, expected: {1}, actual: {2}'.format(iExpected==iActual, iExpected, iActual))
assert iExpected==iActual, ""
print('dataSorted:', arrDataSorted)
print('heapData: ',heapData)
# 元素是自定义类
def testClassValue():
class Model4Test(object):
'''
用于放入到堆的自定义类。注意要重写__lt__、__ge__、__le__和__cmp__函数。
'''
def __init__(self, sUid, value):
self._sUid = sUid
self._value = value
def getUid(self):
return self._sUid
def getValue(self):
return self._value
# 类类型,使用的是小于号_lt_
def __lt__(self, other):#operator <
# print('in __lt__(self, other)')
return self.getValue() < other.getValue()
def __ge__(self,other):#oprator >=
return self.getValue() >= other.getValue()
#下面两个方法重写一个就可以了
def __le__(self,other):#oprator <=
return self.getValue() <= other.getValue()
def __cmp__(self,other):
#call global(builtin) function cmp for int
return super.cmp(self.getValue(),other.getValue())
def __str__(self):
return '({0}, {1})'.format(self._value, self._sUid)
for iTimes in range(10):
iLen = random.randint(1,300)
listData = random.sample(range(iLen*100), iLen)
# listData = [1, 4, 3, 2, 5, 7, 6]
allData = [Model4Test(str(value), value) for value in listData]
print('allData: ', [str(e) for e in allData])
iLen = len(allData)
print('\nlen =',iLen)
oMaxHeap = MaxHeap()
arrDataSorted = sorted(allData, reverse=True)
print('dataSorted:', [str(e) for e in arrDataSorted])
for i in allData:
oMaxHeap.add(i)
heapData = []
for i in range(iLen):
iExpected = arrDataSorted[i]
iActual = oMaxHeap.pop()
heapData.append(iActual)
print('{0}, expected: {1}, actual: {2}'.format(iExpected==iActual, iExpected, iActual))
assert iExpected==iActual, ""
print('dataSorted:', [str(e) for e in arrDataSorted])
print('heapData: ', [str(e) for e in heapData])
if __name__ == '__main__':
testIntValue()
testTupleValue()
testClassValue()
--结束END--
本文标题: Python实现最大堆(大顶堆)
本文链接: https://lsjlt.com/news/186186.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0