1. 给定a = [1,2,[3,4,[5,6,7,[8,9,[10,11]]]]],要求打印输出:1,2,3,4,5,6,7,8,9,10,11
使用递归函数遍历a,当a的值为list,继续调用递归函数,一层一层的取值
def iter_list(l):
for i in l:
if isinstance(i,list):
iter_list(i)
#当当前传入的列表里面的元素为list的时候,调用递归函数
else:
print(i,end =' ')
iter_list(a)
2.在第1题的基础上将生成结果为一个列表
#方法1
def iter_list(l,result=[]):
#result是默认参数,当不传值的时候使用result=[],当传值的时候使用传入的值
for i in l:
if isinstance(i,list):
iter_list2(i,result)
else:
result.append(i)
return result
print(iter_list(a))
#方法2
def iter_list2(l,result):
for i in l:
if isinstance(i,list):
iter_list2(i,result)
else:
result.append(i)
return result
result =[]
print(iter_list2(a,result))
3.递归写一个方法输出n,n-1....10,9,8。。。1到0结束
#算法:打印每个数,当次数小于0的时候退出递归
def output_num(n):
print(n)
if n>0:
output_num(n-1)
else:
print('——-————')
output_num(5)
4.使用递归函数写一个求最大共约束的方法
#算法:最大公约数使用辗转相除法
求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29
def find_max_common_divisor(a,b):
if a<b:
a,b = b,a
print(a,b)
#保证a>b
if a%b!=0:
print('a%b分支被执行')
temp = b
b = a%b
a = temp
print(a,b)
return find_max_common_divisor(a,b)
#return有短路效果,后面的语句不执行
else:
return b
print(find_max_common_divisor(319,377))
5.递归实现嵌套列表求和
s=[[14, 80, 35], [3, 63, 50], [28, 80, 27], [32, 56, 3]]
def iter_sum(s):
result =0
for i in s:
print(type(i))
if isinstance(i,list):
print('if分支被执行i:',i,'result:',result)
result +=iter_sum(i)
#此处一定要result+=iter_sum(i),最终遍历出所有列表的值
else:
result +=i
print('else分支被执行',result)
return result
print(s)
print(iter_sum(s))
0