返回顶部
首页 > 资讯 > 后端开发 > Python >解读MaxPooling1D和GlobalMaxPooling1D的区别
  • 426
分享到

解读MaxPooling1D和GlobalMaxPooling1D的区别

MaxPooling1DGlobalMaxPooling1D 2022-12-17 12:12:31 426人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录MaxPooling1D和GlobalMaxPooling1D区别输出如下图tf.keras.layers.GlobalMaxPool1D()总结MaxPooling1D和Glo

MaxPooling1D和GlobalMaxPooling1D区别

import Tensorflow as tf

from tensorflow import keras
input_shape = (2, 3, 4)
x = tf.random.nORMal(input_shape)
print(x)

y=keras.layers.GlobalMaxPool1D()(x)
print("*"*20)

print(y)
'''
  """Global average pooling operation for temporal data.

  Examples:

  >>> input_shape = (2, 3, 4)
  >>> x = tf.random.normal(input_shape)
  >>> y = tf.keras.layers.GlobalAveragePooling1D()(x)
  >>> print(y.shape)
  (2, 4)

  Arguments:
    data_format: A string,
      one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, steps, features)` while `channels_first`
      corresponds to inputs with shape
      `(batch, features, steps)`.

  Call arguments:
    inputs: A 3D tensor.
    mask: Binary tensor of shape `(batch_size, steps)` indicating whether
      a given step should be masked (excluded from the average).

  Input shape:
    - If `data_format='channels_last'`:
      3D tensor with shape:
      `(batch_size, steps, features)`
    - If `data_format='channels_first'`:
      3D tensor with shape:
      `(batch_size, features, steps)`

  Output shape:
    2D tensor with shape `(batch_size, features)`.
  """
'''

print("--"*20)

input_shape = (2, 3, 4)
x = tf.random.normal(input_shape)
print(x)

y=keras.layers.MaxPool1D(pool_size=2,strides=1)(x)  # strides 不指定 默认等于 pool_size
print("*"*20)

print(y)

输出如下图

上图GlobalMaxPool1D 相当于给每一个样本每列的最大值

而MaxPool1D就是普通的对每一个样本进行一个窗口(1D是一维列窗口)滑动取最大值。

tf.keras.layers.GlobalMaxPool1D()

与tf.keras.layers.Conv1D的输入一样,输入一个三维数据(batch_size,feature_size,output_dimension)

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])
​​​​​​​x = tf.reshape(x, [2, 3, 1])
max_pool_1d=tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)

其中max_pool_1d(x)和tf.math.reduce_max(x,axis=-2,keepdims=False)作用相同

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

--结束END--

本文标题: 解读MaxPooling1D和GlobalMaxPooling1D的区别

本文链接: https://lsjlt.com/news/175141.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作