目录冒泡排序图片演示普通的冒泡排序算法优化算法小结冒泡排序 冒泡排序是交换排序中最简单的一种算法。 算法思路: 遍历数组,相邻的两个元素进行比较,以升序为例,如果前面的元素大于后面的
冒泡排序是交换排序中最简单的一种算法。 算法思路:
第一轮遍历 [4, 2, 1, 3]
第二轮遍历 [2, 1, 3, 4]
第三轮遍历 [1, 2, 3, 4]
import "fmt"
func main() {
nums := [4]int{4, 2, 1, 3}
fmt.Println("原数组:", nums)
fmt.Println("--------------------------------")
NORMalBubbleSort(nums)
}
func NormalBubbleSort(nums [4]int) {
for i := 0; i < len(nums)-1; i++ {
for j := 0; j < len(nums)-i-1; j++ {
if nums[j] > nums[j+1] {
nums[j], nums[j+1] = nums[j+1], nums[j]
}
}
fmt.Printf("第 %d 轮遍历后的数组:%v\n", i+1, nums)
}
fmt.Println("--------------------------------")
fmt.Println("排序后的数组:", nums)
}
执行结果:
原数组: [4 2 1 3]
--------------------------------
第 1 轮遍历后的数组:[2 1 3 4]
第 2 轮遍历后的数组:[1 2 3 4]
第 3 轮遍历后的数组:[1 2 3 4]
--------------------------------
排序后的数组: [1 2 3 4]
值得注意的一个地方是第二层循环的条件 j < len(nums)-i-1
,为什么会减去 i
,因为每轮遍历结束之后,都会有一个元素被固定到后面,因此再进行下一轮的时候,那个元素无须再进行比较。
算法遍历次数为 n -1,每次遍历时元素比较的次数依次为 n - 1、n - 2、n - 3、···、3、2、1,将所有次数求和 = 1 + 2 + 3 + ··· + n - 2 + n - 1= n - 1 * (n - 1 + 1) / 2 = (n² - 1) / 2,因此时间复杂度为 O(n²)。
上述例子中,对数组 [4,2,1,3] 进行排序,我们来看看对数组 [4,2,1,3,5] 进行排序,打印数组排序的变化过程中:
原数组: [4 2 1 3 5]
--------------------------------
第 1 轮遍历后的数组:[2 1 3 4 5]
第 2 轮遍历后的数组:[1 2 3 4 5]
第 3 轮遍历后的数组:[1 2 3 4 5]
第 4 轮遍历后的数组:[1 2 3 4 5]
--------------------------------
排序后的数组: [1 2 3 4 5]
不难看出,第三轮与第四轮遍历过程中,都没有进行元素交换位置的操作,对此我们可以推出一个结论,如果在一轮遍历中,没有进行元素交换位置的操作,那么此时数组的里所有元素都处于正确位置。 根据这个结论,我们可以对算法进行优化:
import "fmt"
func main() {
nums := [5]int{4, 2, 1, 3, 5}
fmt.Println("原数组:", nums)
fmt.Println("--------------------------------")
BestBubbleSort(nums)
}
func BestBubbleSort(nums [5]int) {
isSwapped := true
for isSwapped {
isSwapped = false
for i := 0; i < len(nums)-1; i++ {
if nums[i] > nums[i+1] {
nums[i], nums[i+1] = nums[i+1], nums[i]
isSwapped = true
}
}
fmt.Println("遍历后的数组:", nums)
}
fmt.Println("--------------------------------")
fmt.Println("排序后的数组:", nums)
}
执行结果:
原数组:
--------------------------------
遍历后的数组: [2 1 3 4 5]
遍历后的数组: [1 2 3 4 5]
遍历后的数组: [1 2 3 4 5]
--------------------------------
排序后的数组: [1 2 3 4 5]
isSwapper
,作为第一层循环的条件,每轮遍历开始之后,将标记变量 isSwapper
赋值为 false
,如果在比较的过程中发生元素交换,则将标记变量 isSwapper
赋值为 true
。直到 isSwapper
为 false
时,数组的里所有元素都处于正确的位置,此时可以结束遍历了。本文首先对冒泡排序进行简单的介绍,然后通过图片演示冒泡排序的思路。普通冒泡排序算法一共要遍历 n - 1 轮,由测试用例 [4 2 1 3 5] 的结果可以推断出 如果在一轮遍历中,没有进行元素交换位置的操作,那么此时数组的里所有元素都处于正确位置。 根据这个结论,对算法进行优化,优化后的算法,最好的情况下时间复杂度为 O(N)。
到此这篇关于基于Go语言实现冒泡排序算法的文章就介绍到这了,更多相关Go语言冒泡排序内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: 基于Go语言实现冒泡排序算法
本文链接: https://lsjlt.com/news/174508.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-04-05
2024-04-05
2024-04-05
2024-04-04
2024-04-05
2024-04-05
2024-04-05
2024-04-05
2024-04-04
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0