返回顶部
首页 > 资讯 > 后端开发 > Python >Java数据结构之有向图的拓扑排序详解
  • 944
分享到

Java数据结构之有向图的拓扑排序详解

Java有向图 拓扑排序Java 有向图Java 拓扑排序 2022-11-13 19:11:51 944人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录前言拓扑排序介绍检测有向图中的环实现思路api设计代码实现基于深度优先的顶点排序实现思路API设计代码实现拓扑排序API设计代码实现测试验证前言 在现实生活中,我们经常会同一时间

前言

在现实生活中,我们经常会同一时间接到很多任务去完成,但是这些任务的完成是有先后次序的。以我们学习java

学科为例,我们需要学习很多知识,但是这些知识在学习的过程中是需要按照先后次序来完成的。从Java基础,到

jsp/servlet,到SSM,到SpringBoot等是个循序渐进且有依赖的过程。在学习jsp前要首先掌握java基础和html

础,学习ssm框架前要掌握jsp/servlet之类才行。

为了简化问题,我们使用整数为顶点编号的标准模型来表示这个案例:

此时如果某个同学要学习这些课程,就需要指定出一个学习的方案,我们只需要对图中的顶点进行排序,让它转换为一个线性序列,就可以解决问题,这时就需要用到一种叫拓扑排序算法

拓扑排序介绍

给定一副有向图,将所有的顶点排序,使得所有的有向边均从排在前面的元素指向排在后面的元素,此时就可以明确的表示出每个顶点的优先级。下列是一副拓扑排序后的示意图:

检测有向图中的环

如果学习x课程前必须先学习y课程,学习y课程前必须先学习z课程,学习z课程前必须先学习x课程,那么一定是有问题了,我们就没有办法学习了,因为这三个条件没有办法同时满足。其实这三门课程x、y、z的条件组成了一个环:

因此,如果我们要使用拓扑排序解决优先级问题,首先得保证图中没有环的存在。

实现思路

在API中添加了onStack[] 布尔数组索引为图的顶点,当我们深度搜索时:

  • 在如果当前顶点正在搜索,则把对应的onStack数组中的值改为true,标识进栈;
  • 如果当前顶点搜索完毕,则把对应的onStack数组中的值改为false,标识出栈;
  • 如果即将要搜索某个顶点,但该顶点已经在栈中,则图中有环;

API设计

类名DirectedCycle
成员变量1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private boolean hasCycle: 记录图中是否有环3.private boolean[] onStack:索引代表顶点,使用栈的思想,记录当前顶点有没有已经处于正在搜索的有向路径上
构造方法DirectedCycle(Digraph G):创建一个检测环对象,检测图G中是否有环
成员方法1.private void dfs(Digraph G,int v):基于深度优先搜索,检测图G中是否有环2.public boolean hasCycle():判断图中是否有环

代码实现


public class DirectedCycle {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //记录图中是否有环
    private boolean hasCycle;
    //索引代表顶点,使用栈的思想,记录当前顶点有没有已经处于正在搜索的有向路径上
    private boolean[] onStack;

    //创建一个检测环对象,检测图G中是否有环
    public DirectedCycle(Digraph G){
        //初始化marked数组
        this.marked = new boolean[G.V()];
        //初始化hasCycle
        this.hasCycle = false;
        //初始化onStack数组
        this.onStack = new boolean[G.V()];

        //找到图中每一个顶点,让每一个顶点作为入口,调用一次dfs进行搜索
        for (int v =0; v<G.V();v++){
            //判断如果当前顶点还没有搜索过,则调用dfs进行搜索
            if (!marked[v]){
                dfs(G,v);
            }
        }
    }

    //基于深度优先搜索,检测图G中是否有环
    private void dfs(Digraph G, int v){
        //把顶点v表示为已搜索
        marked[v] = true;
        //把当前顶点进栈
        onStack[v] = true;

        for(Integer w: G.adj(v)) {
            //判断如果当前顶点w没有被搜索过,则继续递归调用dfs方法完成深度优先搜索
            if(!marked[w]) {
                dfs(G, w);
            }

            //判断当前顶点w是否已经在栈中,如果已经在栈中,证明当前顶点之前处于正在搜索的状态,那么现在又要搜索一次,证明检测到环了
            if (onStack[w]){
                hasCycle = true;
                return;
            }
        }
        //把当前顶点出栈
        onStack[v] = false;
    }

    //判断当前有向图G中是否有环
    public boolean hasCycle(){
        return hasCycle;
    }
}

基于深度优先的顶点排序

实现思路

如果要把图中的顶点生成线性序列其实是一件非常简单的事,之前我们学习并使用了多次深度优先搜索,我们会发现其实深度优先搜索有一个特点,那就是在一个连通子图上,每个顶点只会被搜索一次,如果我们能在深度优先搜索的基础上,添加一行代码,只需要将搜索的顶点放入到线性序列的数据结构中,我们就能完成这件事。

我们添加了一个栈reversePost用来存储顶点,当我们深度搜索图时,每搜索完毕一个顶点,把该顶点放入到reversePost中,这样就可以实现顶点排序。

API设计

类名DepthFirstOrder
成员变量1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索2.private Stack reversePost: 使用栈,存储顶点序列
构造方法DepthFirstOrder(Digraph G):创建一个顶点排序对象,生成顶点线性序列;
成员方法1.private void dfs(Digraph G,int v):基于深度优先搜索,生成顶点线性序列2.public Stack reversePost():获取顶点线性序列

代码实现


public class DepthFirstOrder {
    //索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //使用栈,存储顶点序列
    private Stack<Integer> reversePost;

    //创建一个检测环对象,检测图G中是否有环
    public DepthFirstOrder(Digraph G){
        //初始化marked数组
        this.marked = new boolean[G.V()];
        //初始化reversePost栈
        this.reversePost = new Stack<>();

        //遍历图中的每一个顶点,让每个顶点作为入口,完成一次深度优先搜索
        for (int v = 0;v<G.V();v++){
            if (!marked[v]){
                dfs(G,v);
            }
        }
    }

    //基于深度优先搜索,把顶点排序
    private void dfs(Digraph G, int v){
        //标记当前v已经被搜索
        marked[v] = true;
        //通过循环深度搜索顶点v
        for (Integer w : G.adj(v)) {
            //如果当前顶点w没有搜索,则递归调用dfs进行搜索
            if (!marked[w]){
                dfs(G,w);
            }
        }
        //让顶点v进栈
        reversePost.push(v);
    }

    //获取顶点线性序列
    public Stack<Integer>  reversePost(){
        return reversePost;
    }
}

拓扑排序

前面已经实现了环的检测以及顶点排序,那么拓扑排序就很简单了,基于一幅图,先检测有没有环,如果没有环,则调用顶点排序即可。

API设计

类名TopoLogical
成员变量1.private Stack order: 顶点的拓扑排序
构造方法TopoLogical(Digraph G):构造拓扑排序对象
成员方法1.public boolean isCycle():判断图G是否有环2.public Stack order():获取拓扑排序的所有顶点

代码实现


public class TopoLogical {
    //顶点的拓扑排序
    private Stack<Integer> order;

    //构造拓扑排序对象
    public TopoLogical(Digraph G) {
        //创建一个检测有向环的对象
        DirectedCycle cycle = new DirectedCycle(G);
        //判断G图中有没有环,如果没有环,则进行顶点排序:创建一个顶点排序对象
        if (!cycle.hasCycle()){
            DepthFirstOrder depthFirstOrder = new DepthFirstOrder(G);
            order = depthFirstOrder.reversePost();
        }
    }

    //判断图G是否有环
    private boolean isCycle(){
        return order==null;
    }

    //获取拓扑排序的所有顶点
    public Stack<Integer> order(){
        return order;
    }
}

测试验证

public class TopoLogicalTest {

    @Test
    public void test() {
        //准备有向图
        Digraph digraph = new Digraph(6);
        digraph.addEdge(0,2);
        digraph.addEdge(0,3);
        digraph.addEdge(2,4);
        digraph.addEdge(3,4);
        digraph.addEdge(4,5);
        digraph.addEdge(1,3);

        //通过TopoLogical对象堆有向图中的顶点进行排序
        TopoLogical topoLogical = new TopoLogical(digraph);

        //获取顶点的线性序列进行打印
        Stack<Integer> order = topoLogical.order();
        StringBuilder sb = new StringBuilder();
        while (order.size() != 0) {
            sb.append(order.pop()+"->");
        };
        String str = sb.toString();
        int index = str.lastIndexOf("->");
        str = str.substring(0,index);
        System.out.println(str);
    }
}

到此这篇关于Java数据结构之有向图的拓扑排序详解的文章就介绍到这了,更多相关Java有向图 拓扑排序内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Java数据结构之有向图的拓扑排序详解

本文链接: https://lsjlt.com/news/170636.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Java数据结构之有向图的拓扑排序详解
    目录前言拓扑排序介绍检测有向图中的环实现思路API设计代码实现基于深度优先的顶点排序实现思路API设计代码实现拓扑排序API设计代码实现测试验证前言 在现实生活中,我们经常会同一时间...
    99+
    2022-11-13
    Java有向图 拓扑排序 Java 有向图 Java 拓扑排序
  • C++详细讲解图的拓扑排序
    目录一、前言二、算法流程三、有向图的拓扑排序一、前言 且该序列必须满足下面两个条件: 每个顶点出现且只出现一次。若存在一条从顶点 x到顶点 y的路径,那么在序列中顶点 x 出现在顶点...
    99+
    2024-04-02
  • Java数据结构之有向图设计与实现详解
    目录前言定义及相关术语API设计代码实现前言 在实际生活中,很多应用相关的图都是有方向性的,最直观的就是网络,可以从A页面通过链接跳转到B页面,那么a和b连接的方向是a->b,...
    99+
    2022-11-13
    Java数据结构有向图 Java有向图
  • java数据结构与算法之快速排序详解
    本文实例讲述了java数据结构与算法之快速排序。分享给大家供大家参考,具体如下:交换类排序的另一个方法,即快速排序。快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进;实现了一次交换可消除多个逆序。通过一趟排序...
    99+
    2023-05-31
    java 数据结构 算法
  • java数据结构与算法之冒泡排序详解
    本文实例讲述了java数据结构与算法之冒泡排序。分享给大家供大家参考,具体如下:前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即:冒泡排序、快速排序(冒泡排序的改进)。交换类的算法:通过交换逆序元素进行排序的...
    99+
    2023-05-31
    java 数据结构 算法
  • java数据结构之希尔排序
    希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是基于插入排序的以下两点性质而提出改进方法的:        插入排序...
    99+
    2023-05-30
    java 希尔排序 ava
  • Java数据结构之双向链表图解
    双向链表(Doubly linked list) 什么是双向链表? 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的...
    99+
    2024-04-02
  • C语言数据结构之堆排序详解
    目录1.堆的概念及结构2.堆的实现2.1 堆的向下调整算法2.2 堆的向上调整算法2.3 建堆(数组)2.4 堆排序2.5 堆排序的时间复杂度1.堆的概念及结构 如果有一个关键码的集...
    99+
    2024-04-02
  • Go数据结构之堆排序示例详解
    目录堆排序堆排序过程动画显示开始堆排序代码实现总结堆排序 堆排序是一种树形选择排序算法。 简单选择排序算法每次选择一个关键字最小的记录需要 O(n) 的时间,而堆排序选择一个关键字最...
    99+
    2024-04-02
  • Java数据结构之插入排序与希尔排序
    目录 一、正文1.排序的概念及其运用1.1排序的概念1.2排序运用1.3常见的排序算法2.插入排序算法的实现2.1插入排序二、测试代码三、结语 一、正文 1.排序...
    99+
    2023-05-14
    Java数据结构插入排序与希尔排序 数据结构插入排序 数据结构希尔排序
  • Java集合和数据结构排序实例详解
    目录概念插入排序直接插入排序代码实现性能分析希尔排序代码实现性能分析选择排序直接选择排序代码实现性能分析堆排序代码实现性能分析交换排序冒泡排序代码实现性能分析快速排序代码实现性能分析...
    99+
    2024-04-02
  • java数据结构与算法之桶排序实现方法详解
    本文实例讲述了java数据结构与算法之桶排序实现方法。分享给大家供大家参考,具体如下:基本思想:假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数。将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中...
    99+
    2023-05-31
    java 数据结构 算法
  • Python数据结构之图的存储结构详解
    一、图的定义 图是一种比树更复杂的一种数据结构,在图结构中,结点之间的关系是任意的,任意两个元素之间都可能相关,因此,它的应用极广。图中的数据元素通常被称为顶点 ( V e r t ...
    99+
    2024-04-02
  • Java数据结构之图的领接矩阵详解
    目录1.图的领接矩阵(Adjacency Matrix)存储结构2.图的接口类3.图的类型,用枚举类表示4.图的领接矩阵描述测试类结果1.图的领接矩阵(Adjacency Matri...
    99+
    2024-04-02
  • java数据结构之栈的详解
    目录一、栈1.栈的应用1.1括号匹配1.2后缀表达式1.3用栈实现队列1.4最小栈1.5栈的压入和弹出序列总结一、栈 栈的特性就是先进后出,常用方法是入栈(push()),出栈(po...
    99+
    2024-04-02
  • Java数据结构之二叉排序树的实现
    目录1 二叉排序树的概述2 二叉排序树的构建2.1 类架构2.2 查找的方法2.3 插入的方法2.4 查找最大值和最小值2.5 删除的方法3 二叉排序树的总结1 二叉排序树的概述 本...
    99+
    2024-04-02
  • Java数据结构的十大排序
    目录1.直接插入排序1.1 动图演示1.2 插入排序的思路1.3 代码实现1.4 性能分析2.希尔排序2.1 原理2.2 动图演示2.3 代码实现2.4 性能分析3.直接选择排序3....
    99+
    2024-04-02
  • Java数据结构之栈的线性结构详解
    目录一:栈二:栈的实现三:栈的测试四:栈的应用(回文序列的判断)总结一:栈 栈是限制插入和删除只能在一个位置上进行的表,此位置就是表的末端,叫作栈顶。 栈的基本操作分为push(入...
    99+
    2024-04-02
  • Go语言数据结构之希尔排序示例详解
    目录希尔排序算法思想图解算法Go 代码实现:总结希尔排序 在插入排序中,在待排序序列的记录个数比较少,而且基本有序,则排序的效率较高。 1959 年,Donald ...
    99+
    2024-04-02
  • Go语言数据结构之选择排序示例详解
    目录选择排序动画演示Go 代码实现总结选择排序 选择排序(selection sort)是一种原地(in-place)排序算法,适用于数据量较少的情况。由于选择操作是基于键...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作