返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++简单实现与分析二叉搜索树流程
  • 513
分享到

C++简单实现与分析二叉搜索树流程

2024-04-02 19:04:59 513人浏览 泡泡鱼
摘要

目录二叉搜索树二叉搜索树的重要操作二叉搜索树实现(key模型)二叉搜索树的应用二叉搜索树的实现(key/value模型)二叉搜索树 二叉搜索树又被称为二叉排序树。它可以是一个空树,如

二叉搜索树

二叉搜索树又被称为二叉排序树。它可以是一个空树,如果不是空树则满足下列性质:

1、如果它的左子树不为空,那么左子树上的所有节点都小于根。

2、如果它的右子树不为空,那么右子树上的所有节点都大于根

3、它的左子树、右子树也是二叉搜索树。

二叉搜索树的重要操作

二叉搜索树的插入

1、如果树为空,则直接插入

2、如果树不为空,则找到对应的位置插入。

查找办法:

根据二叉搜索树的性质,

1、如果给出的关键码比当前节点的关键码小,则在当前节点的左子树中找位置

2、如果给出的关键码比当前节点的关键码大,则在当前节点的右子树中找位置

如此反复循环……,直到找到一个空的位置插入。

二叉搜索树的删除

删除分为三种情况:

  • 情况一:要删除的节点左孩子为空
  • 情况二:要删除的节点左孩子不为空,右孩子为空
  • 情况三:要删除的节点既有左孩子也有右孩子。

删除情况一分析:

例如,删除关键码为1的节点。它的左孩子为空,那么遍历这个二叉树,找到这个节点。让这个节点的父亲节点指向该节点的右孩子节点

但是需要考虑删除节点的父节点是右孩子指向,还是左孩子指向。

删除情况二分析:

例如,删除关键码为7的节点。它的左孩子不为空,右孩子为空。首先遍历这个二叉树,找到这个节点。让这个节点的父亲节点指向该节点的左孩子节点。同样需要考虑删除节点的父节点是左孩子指向还是右孩子指向。

情况一和情况二都面临这样一个问题,如果删除的是根节点则需要单独考虑。

删除情况三分析:

解决办法:替换法

替换法:如果删除节点既有左孩子又有右孩子,为了删除之后依旧能使其保留二叉搜索树的性质,则需要将删除的节点和一个合适的节点进行替换,使这个合适的节点替换到删除节点的位置,然后删除被替换的节点即可解决。

两个合适的节点:

1、删除节点的左子树中最大节点。

2、删除节点的右子树中最小节点。

例如,删除关键码为5的节点。它的左孩子、右孩子都不为空。首先遍历这个二叉树,找到这个节点。为使删除后依旧能保持二叉搜索树的性质,需要挑选一个合适的节点进行替换。这个合适的节点是关键码为4的节点(删除节点的左子树中最大节点)和关键码为6的节点(删除节点的右子树中最小节点),选一个即可。将替换节点的值给删除节点后,删除替换节点,然后这个时候就转变为了删除情况一了,按照删除情况一的做法即可完美删除!

二叉搜索树实现(key模型)

	template<class K>
	struct BSTreenode
	{
		BSTreeNode<K>* _left;
		BSTreeNode<K>* _right;
		K _key;
		BSTreeNode(const K& key)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
		{}
	};
	template<class K>
	class BSTree
	{
		typedef BSTreeNode<K> Node;
	public:
		BSTree()
			:_root(nullptr)
		{}
		//insert
		bool insert(const K& key)
		{
			if (_root == nullptr)
			{
				//为空
				//直接就是给成根节点
				_root = new Node(key);
				return true;
			}
			Node* parent = nullptr;
			Node* cur = _root;
			//找到插入的位置
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false; //已经有了,则不能插入
				}
			}
			cur = new Node(key);
			if (parent->_key > key)
			{
				//插入左边
				parent->_left = cur;
			}
			else
			{
				//插入右边
				parent->_right = cur;
			}
			return true;
		}
		bool Find(const K& key)
		{
			if (_root == nullptr)
			{
				return false;
			}
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else
				{
					return true;
				}
			}
			return false;
		}
		bool erase(const K& value)
		{
			if (_root == nullptr)
			{
				return false;
			}
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > value)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < value)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//找到了,开始删除
					//情况一:要删除的节点左孩子为空
					if (cur->_left == nullptr)
					{
						if (parent == nullptr)
						{
							//删除的是根节点
							_root = cur->_right;
						}
						//判断删除的是左孩子节点还是右孩子节点以便更改连接关系
						if (parent->_left == cur)
						{
							parent->_left = cur->_right;
						}
						else
						{
							parent->_right = cur->_right;
						}
						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						//情况二:要删除的节点左孩子不为空、右孩子为空
						if (parent == nullptr)
						{
							//删除的是根节点
							_root = cur->_left;
						}
						if (parent->_left == cur)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
						delete cur;
					}
					else
					{
						//情况三:要删除的节点即有左孩子也有右孩子
						//使用替换法
						//两种替换:1、用该节点的左子树最大节点 2、用该节点右子树的最小节点
						//这里使用第一种替换方法
						//找到用于替换的节点
						Node* maxParent = cur;
						Node* maxCur = cur->_right;
						while (maxCur->_right)
						{
							maxParent = maxCur;
							maxCur = maxCur->_right;
						}
						//
						cur->_key = maxCur->_key;
						//删除用于替换的节点
						if (maxParent->_left == maxCur)
						{
							maxParent->_left = maxCur->_left;
						}
						else
						{
							maxParent->_right = maxCur->_left;
						}
						delete maxCur;
					}
					return true;
				}
			}
			//要删除的节点不存在
			return false;
		}
		//由于类外使用不到私有成员_root
		//增加一个函数
		void inorder()
		{
			_inorder(_root);
		}
		//递归版
		Node* FindR(const K& key)
		{
			return _FindR(_root, key);
		}
		bool insertR(const K& key)
		{
			return _insertR(_root, key);
		}
		bool eraseR(const K& key)
		{
			return _eraseR(_root, key);
		}
	private:
		void _inorder(Node* root) //不需要在类外显示调用它,所以放在私有
		{
			if (root == nullptr)
			{
				return;
			}
			_inorder(root->_left);
			cout << root->_key << " ";
			_inorder(root->_right);
		}
		Node* _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
			{
				return nullptr;
			}
			if (root->_key > key)
			{
				_FindR(root->_left, key);
			}
			else if (root->_key < key)
			{
				_FindR(root->_right, key);
			}
			else
			{
				//找到了
				return root;
			}
		}
		bool _insertR(Node*& root, const K& key) //注意root加引用
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}
			if (root->_key > key)
			{
				_insertR(root->_left, key);
			}
			else if (root->_key < key)
			{
				_insertR(root->_right, key);
			}
			else
			{
				return false;
			}
		}
		bool _eraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				//都已经找到空了,表示不存在
				return false;
			}
			if (root->_key > key)
			{
				_eraseR(root->_left, key);
			}
			else if (root->_key < key)
			{
				_eraseR(root->_right, key);
			}
			else
			{
				//找到要删除的节点了,开始删除
				Node* del = root;
				//左孩子为空
				if (root->_left == nullptr)
				{
					root = root->_right; //使用了引用,直接就是
				}
				else if (root->_right == nullptr)
				{
					//左孩子不为空,右孩子为空
					root = root->_left;
				}
				else
				{
					Node* min = root->_right;
					while (min->_left)
					{
						min = min->_left;
					}
					swap(min->_key, root->_key);
					// 递归到右子树去删除
					return _eraseR(root->_right, key);
				}
				delete del;
				return true;
			}
		}
	private:
		Node* _root;
	};

二叉搜索树的应用

应用一:排序+去重

应用二:key模型、key/value模型

二叉搜索树的排序体现在中序遍历二叉搜索树时是有序的。

key模型:key模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。其价值在于判断“在不在”。

比如:给一个单词Word,判断该单词是否拼写正确,具体方式如下:

以单词集合中的每个单词作为key,构建一棵二叉搜索树

在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

key/value模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见。其价值在于可通过一个信息,找到其对应的其他东西。。

比如:

1、通过英文查找对应的中文;

2、高铁检票通过身份证查找对应的乘车信息……

二叉搜索树的实现(key/value模型)

//二叉搜索树key/value模型
namespace KV
{
	template<class K, class V>
	struct	BSTreeNode
	{
		BSTreeNode* _left;
		BSTreeNode* _right;
		K _key;
		V _value;
		BSTreeNode(const K& key, const V& value)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
			, _value(value)
		{}
	};
	template<class K, class V>
	class BSTree
	{
		typedef BSTreeNode<K, V> Node;
	public:
		BSTree()
			:_root(nullptr)
		{}
		bool insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return true;
			}
			//找到要插入的位置
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					//在左子树
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					//在右子树
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key, value);
			//
			if (parent->_key > key)
			{
				//插入左孩子节点
				parent->_left = cur;
			}
			else
			{
				parent->_right = cur;
			}
			return true;
		}
		Node* Find(const K& key)
		{
			if (_root == nullptr)
			{
				return nullptr;
			}
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					//在左子树
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					//在右子树
					cur = cur->_right;
				}
				else
				{
					//相等,找到了
					return cur;
				}
			}
			//不存在
			return nullptr;
		}
		bool Erase(const K& key)
		{
			if (_root == nullptr)
			{
				return false;
			}
			//找到要删除的节点
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//找到了
					//开始删除
					//情况一:要删除的节点没有左子树
					if (cur->_left == nullptr)
					{
						if (parent == nullptr)
						{
							//删除的是根节点
							_root = cur->_right;
						}
						//判断删除的是左孩子节点还是右孩子节点,方便更改连接关系
						if (parent->_left = cur)
						{
							parent->_left = cur->_right;
						}
						else
						{
							parent->_right = cur->_right;
						}
						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						//情况二:要删除的节点左孩子不为空,,右孩子为空
						if (parent == nullptr)
						{
							_root = cur->_left;
						}
						if (parent->_left = cur)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
						delete cur;
					}
					else
					{
						//情况三:要删除的节点既有左孩子也有右孩子
						//要使用替换法删除
						//使用右子树的最小节点进行替换
						Node* minParent = cur;
						Node* minCur = cur->_right;
						//找到右子树的最小节点
						while (minCur->_left)
						{
							minParent = minCur;
							minCur = minCur->_left;
						}
						//替换
						cur->_key = minCur->_key;
						cur->_value = minCur->_value;
						//删除替换节点,并更改连接关系
						if (minParent->_left == minCur)
						{
							minParent->_left = minCur->_right;
						}
						else
						{
							minParent->_right = minCur->_right;
						}
						delete minCur;
					}
					return true;
				}
			}
			return false;
		}
		void inorder()
		{
			_inorder(_root);
		}
	private:
		void _inorder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}
			_inorder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_inorder(root->_right);
		}
	private:
		Node* _root;
	};
}

到此这篇关于c++简单实现与分析二叉搜索树流程的文章就介绍到这了,更多相关C++二叉搜索树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++简单实现与分析二叉搜索树流程

本文链接: https://lsjlt.com/news/166231.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C++简单实现与分析二叉搜索树流程
    目录二叉搜索树二叉搜索树的重要操作二叉搜索树实现(key模型)二叉搜索树的应用二叉搜索树的实现(key/value模型)二叉搜索树 二叉搜索树又被称为二叉排序树。它可以是一个空树,如...
    99+
    2024-04-02
  • C++二叉搜索树实例分析
    本篇内容介绍了“C++二叉搜索树实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!独一无二的二叉搜索树Given an integer&...
    99+
    2023-06-19
  • Java简单几步实现一个二叉搜索树
    目录1、认识二叉搜索树2、实现一个二叉搜索树2.1 成员变量2.2 insert 方法2.3 search 方法2.4 remove 方法(重点)3、二叉搜索树总结1、认识二叉搜索树...
    99+
    2023-02-08
    Java二叉搜索树 Java二叉树
  • C++数据结构二叉搜索树的实现应用与分析
    目录概念二叉搜索树的实现基本框架二叉搜索树的插入二叉搜索树的查找二叉搜索树的删除(重点)二叉搜索树的应用二叉树性能分析总结⭐️博客代码已上传至gitee:https://gitee....
    99+
    2024-04-02
  • C++使用LeetCode实现二叉搜索树的示例分析
    这篇文章将为大家详细讲解有关C++使用LeetCode实现二叉搜索树的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Given an integer n, generate all st...
    99+
    2023-06-20
  • Python实现二叉搜索树
    二叉搜索树 我们已经知道了在一个集合中获取键值对的两种不同的方法。回忆一下这些集合是如何实现ADT(抽象数据类型)MAP的。我们讨论两种ADT MAP的实现方式,基于列表的二分查找和哈希表。在这一节中,我...
    99+
    2022-06-04
    Python
  • C++树与二叉树实例分析
    这篇“C++树与二叉树实例分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++树与二叉树实例分析”文章吧。树树的定义Q:...
    99+
    2023-06-30
  • java二叉搜索树使用实例分析
    本篇内容主要讲解“java二叉搜索树使用实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“java二叉搜索树使用实例分析”吧!概念二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性...
    99+
    2023-06-29
  • C++实现LeetCode(98.验证二叉搜索树)
    [LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树 Given a binary tree, determine if it is ...
    99+
    2024-04-02
  • C++实现LeetCode(99.复原二叉搜索树)
    [LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树 Two elements of a binary search tree (BST...
    99+
    2024-04-02
  • C++实现验证二叉搜索树代码
    本篇内容主要讲解“C++实现验证二叉搜索树代码”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++实现验证二叉搜索树代码”吧!验证二叉搜索树Given a binary tree, determ...
    99+
    2023-06-20
  • C++如何实现验证二叉搜索树
    本文小编为大家详细介绍“C++如何实现验证二叉搜索树”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++如何实现验证二叉搜索树”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。验证二叉搜索树Example 1:In...
    99+
    2023-06-19
  • C#实现简单的二叉查找树
    二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右...
    99+
    2024-04-02
  • C++实现LeetCode(173.二叉搜索树迭代器)
    [LeetCode] 173.Binary Search Tree Iterator 二叉搜索树迭代器 Implement an iterator over a binary sea...
    99+
    2024-04-02
  • 【C++】平衡二叉搜索树的模拟实现
    🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风翻盘。 ...
    99+
    2023-09-11
    c++ 开发语言
  • 利用java实现二叉搜索树
    目录二叉搜索树的定义实现一颗二叉搜索树二叉搜索树的定义类二叉搜索树的查找二叉搜索树的插入二叉搜索树的删除二叉搜索树的定义 它是一颗二叉树 任一节点的左子树上的所有节...
    99+
    2024-04-02
  • C++实现LeetCode(96.独一无二的二叉搜索树)
    [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树 Given n, how many structurally un...
    99+
    2024-04-02
  • C语言实例实现二叉搜索树详解
    目录有些算法题里有了这个概念,因为不知道这是什么蒙圈了很久。 先序遍历: root——>left——>right 中序遍历...
    99+
    2024-04-02
  • JavaScript二叉搜索树构建操作实例分析
    本篇内容介绍了“JavaScript二叉搜索树构建操作实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!什么是二叉搜索树二叉搜索树首先它...
    99+
    2023-07-02
  • Java实题演练二叉搜索树与双向链表分析
    目录二叉搜索树与双向链表知识点-二叉树递归知识点-二叉搜索树思路代码二叉搜索树与双向链表 OJ链接 二叉树搜索树与双向链表 描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双...
    99+
    2022-12-08
    Java二叉搜索树 Java双向链表
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作