Python 官方文档:入门教程 => 点击学习
SpringBoot 整合 Redis 数据库实现数据缓存的本质是整合 Redis 数据库,通过对需要“缓存”的数据存入 Redis 数据库中,下次使用时先从
SpringBoot 整合 Redis 数据库实现数据缓存的本质是整合 Redis 数据库,通过对需要“缓存”的数据存入 Redis 数据库中,下次使用时先从 Redis 中获取,Redis 中没有再从数据库中获取,这样就实现了 Redis 做数据缓存。
按照惯例,下面一步一步的实现 springboot 整合 Redis 来存储数据,读取数据。
1.项目添加依赖首页第一步还是在项目添加 Redis 的环境, Jedis。
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
2. 添加redis的参数
spring:
### Redis Configuration
redis:
pool:
max-idle: 10
min-idle: 5
max-total: 20
hostName: 127.0.0.1
port: 6379
3.编写一个 RedisConfig 注册到 Spring 容器
package com.config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import redis.clients.jedis.JedisPoolConfig;
@Configuration
public class RedisConfig {
@Bean
@ConfigurationProperties(prefix="spring.redis.pool")
public JedisPoolConfig jedisPoolConfig() {
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
return jedisPoolConfig;
}
@Bean
@ConfigurationProperties(prefix="spring.redis")
public JedisConnectionFactory jedisConnectionFactory(JedisPoolConfig jedisPoolConfig) {
JedisConnectionFactory jedisConnectionFactory = new JedisConnectionFactory(jedisPoolConfig);
return jedisConnectionFactory;
}
@Bean
public RedisTemplate<String, Object> redisTemplate(JedisConnectionFactory jedisConnectionFactory) {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
// 关联
redisTemplate.setConnectionFactory(jedisConnectionFactory);
// 为 key 设置序列化器
redisTemplate.seTKEySerializer(new StringRedisSerializer());
// 为 value 设置序列化器
redisTemplate.setValueSerializer(new StringRedisSerializer());
return redisTemplate;
}
}
4.使用redisTemplate
package com.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JSONRedisSerializer;
import org.springframework.data.redis.serializer.jdkSerializationRedisSerializer;
import org.springframework.WEB.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import com.bean.Users;
@RestController
public class RedisController {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@RequestMapping("/redishandle")
public String redishandle() {
//添加字符串
redisTemplate.opsForValue().set("author", "欧阳");
//获取字符串
String value = (String)redisTemplate.opsForValue().get("author");
System.out.println("author = " + value);
//添加对象
//重新设置序列化器
redisTemplate.setValueSerializer(new JdkSerializationRedisSerializer());
redisTemplate.opsForValue().set("users", new Users("1" , "张三"));
//获取对象
//重新设置序列化器
redisTemplate.setValueSerializer(new JdkSerializationRedisSerializer());
Users user = (Users)redisTemplate.opsForValue().get("users");
System.out.println(user);
//以json格式存储对象
//重新设置序列化器
redisTemplate.setValueSerializer(new Jackson2JsonRedisSerializer<>(Users.class));
redisTemplate.opsForValue().set("usersJson", new Users("2" , "李四"));
//以json格式获取对象
//重新设置序列化器
redisTemplate.setValueSerializer(new Jackson2JsonRedisSerializer<>(Users.class));
user = (Users)redisTemplate.opsForValue().get("usersJson");
System.out.println(user);
return "home";
}
}
5.项目实战中redisTemplate的使用
package com.shiwen.lujing.service.impl;
import java.util.List;
import java.util.concurrent.TimeUnit;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Service;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.shiwen.lujing.dao.mapper.WellAreaDao;
import com.shiwen.lujing.service.WellAreaService;
import com.shiwen.lujing.util.RedisConstants;
@Service
public class WellAreaServiceImpl implements WellAreaService {
@Autowired
private WellAreaDao wellAreaDao;
@Autowired
private RedisTemplate<String, String> stringRedisTemplate;
@Override
public String getAll() throws JsonProcessingException {
//redis中key是字符串
ValueOperations<String, String> opsForValue = stringRedisTemplate.opsForValue();
//通过key获取redis中的数据
String wellArea = opsForValue.get(RedisConstants.REDIS_KEY_WELL_AREA);
//如果没有去查数据库
if (wellArea == null) {
List<String> wellAreaList = wellAreaDao.getAll();
wellArea = new ObjectMapper().writeValueAsString(wellAreaList);
//将查出来的数据存储在redis中
opsForValue.set(RedisConstants.REDIS_KEY_WELL_AREA, wellArea, RedisConstants.REDIS_TIMEOUT_1, TimeUnit.DAYS);
// set(K key, V value, long timeout, TimeUnit unit)
//timeout:过期时间; unit:时间单位
//使用:redisTemplate.opsForValue().set("name","tom",10, TimeUnit.SECONDS);
//redisTemplate.opsForValue().get("name")由于设置的是10秒失效,十秒之内查询有结
//果,十秒之后返回为null
}
return wellArea;
}
}
6.redis中使用的key
package com.shiwen.lujing.util;
public interface RedisConstants {
String REDIS_KEY_JING_SHOU_ZI = "JING-SHOU-ZI";
String REDIS_KEY_WELL_AREA = "WELL-AREA";
long REDIS_TIMEOUT_1 = 1L;
}
补充:SpringBoot整合RedisTemplate实现缓存信息监控
1、CacheController接口代码
@RestController
@RequestMapping("/monitor/cache")
public class CacheController
{
@Autowired
private RedisTemplate<String, String> redisTemplate;
@PreAuthorize("@ss.hasPermi('monitor:cache:list')")// 自定义权限注解
@GetMapping()
public ajaxResult getInfo() throws Exception
{
// 获取redis缓存完整信息
//Properties info = redisTemplate.getRequiredConnectionFactory().getConnection().info();
Properties info = (Properties) redisTemplate.execute((RedisCallback<Object>) connection -> connection.info());
// 获取redis缓存命令统计信息
//Properties commandStats = redisTemplate.getRequiredConnectionFactory().getConnection().info("commandstats");
Properties commandStats = (Properties) redisTemplate.execute((RedisCallback<Object>) connection -> connection.info("commandstats"));
// 获取redis缓存中可用键Key的总数
//Long dbSize = redisTemplate.getRequiredConnectionFactory().getConnection().dbSize();
Object dbSize = redisTemplate.execute((RedisCallback<Object>) connection -> connection.dbSize());
Map<String, Object> result = new HashMap<>(3);
result.put("info", info);
result.put("dbSize", dbSize);
List<Map<String, String>> pieList = new ArrayList<>();
commandStats.stringPropertyNames().forEach(key -> {
Map<String, String> data = new HashMap<>(2);
String property = commandStats.getProperty(key);
data.put("name", StringUtils.removeStart(key, "cmdstat_"));
data.put("value", StringUtils.substringBetween(property, "calls=", ",usec"));
pieList.add(data);
});
result.put("commandStats", pieList);
return AjaxResult.success(result);
}
}
到此这篇关于SpringBoot整合RedisTemplate实现缓存信息监控的文章就介绍到这了,更多相关SpringBoot整合RedisTemplate内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: SpringBoot整合RedisTemplate实现缓存信息监控的步骤
本文链接: https://lsjlt.com/news/163332.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0