返回顶部
首页 > 资讯 > 后端开发 > Python >人工智能-Python实现多项式回归
  • 954
分享到

人工智能-Python实现多项式回归

2024-04-02 19:04:59 954人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录1、概述1.1 有监督学习1.2 多项式回归2 概念3 案例实现——方法1 3.1 案例分析3.2 代码实现 3.3 结果 

1、概述

1.1 有监督学习

1.2 多项式回归

上一次我们讲解了线性回归,这次我们重点分析多项式回归。

多项式回归(Polynomial Regression) 是研究一个因变量与一 个或多个自变量间多项式的回归分析方法。如果自变量只有一个 时,称为一元多项式回归;如果自变量有多个时,称为多元多项 式回归。 

(1)在一元回归分析中,如果依变量 y 与自变量 x 的关系为非线性的,但 是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。
(2)多项式回归的最大优点就是可以通过增加 x 的高次项对实测点进行逼 近,直至满意为止。
(3)事实上,多项式回归可以处理相当一类非线性问题,它在回归分析 中占有重要的地位,因为任一函数都可以分段用多项式来逼近。

2 概念

之前提到的线性回归实例中,是运用直线来拟合数据输入与输出之间的线性关系。不同于线性回归, 多项式回归是使用曲线拟合数据的输入与输出的映射关系 。

3 案例实现——方法1 

3.1 案例分析

应用背景:我们在前面已经根据已知的房屋成交价和房屋的尺寸进行了线性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行了成交价格的预测,但是在实际的应用中这样的拟合往往不够好,因此我们在此对该数据集进行多项式回归。
目标:对房屋成交信息建立多项式回归方程,并依据回归方程对房屋价格进行预测。

成交信息包括房屋的面积以及对应的成交价格:

  • (1)房屋面积单位为平方英尺( ft 2 )
  • (2)房屋成交价格单位为万

3.2 代码实现 

import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
 
 
# 读取数据集
datasets_X = []
datasets_Y = []
fr = open('多项式线性回归.csv','r')
lines = fr.readlines()
for line in lines:
    items = line.strip().split(',')
    datasets_X.append(int(items[0]))
    datasets_Y.append(int(items[1]))
 
length = len(datasets_X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y)
 
minX = min(datasets_X)
maxX = max(datasets_X)
X = np.arange(minX,maxX).reshape([-1,1])
 
 
poly_reg = PolynomialFeatures(degree = 2)      #degree=2表示建立datasets_X的二次多项式特征X_poly。
X_poly = poly_reg.fit_transfORM(datasets_X)    #使用PolynomialFeatures构造x的二次多项式X_poly
lin_reg_2 = linear_model.LinearRegression()
lin_reg_2.fit(X_poly, datasets_Y)           #然后创建线性回归,使用线性模型(linear_model)学习X_poly和y之间的映射关系
 
print(X_poly)
print(lin_reg_2.predict(poly_reg.fit_transform(X)))
print('Coefficients:', lin_reg_2.coef_)      #查看回归方程系数(k)
print('intercept:', lin_reg_2.intercept_)    ##查看回归方程截距(b)
print('the model is y={0}+({1}*x)+({2}*x^2)'.format(lin_reg_2.intercept_,lin_reg_2.coef_[0],lin_reg_2.coef_[1]))
# 图像中显示
plt.scatter(datasets_X, datasets_Y, color = 'red')  #scatter函数用于绘制数据点,这里表示用红色绘制数据点;
#plot函数用来绘制回归线,同样这里需要先将X处理成多项式特征;
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')
plt.xlabel('Area')
plt.ylabel('Price')
plt.show()

3.3 结果 

[[1.0000000e+00 1.0000000e+03 1.0000000e+06]
 [1.0000000e+00 7.9200000e+02 6.2726400e+05]
 [1.0000000e+00 1.2600000e+03 1.5876000e+06]
 [1.0000000e+00 1.2620000e+03 1.5926440e+06]
 [1.0000000e+00 1.2400000e+03 1.5376000e+06]
 [1.0000000e+00 1.1700000e+03 1.3689000e+06]
 [1.0000000e+00 1.2300000e+03 1.5129000e+06]
 [1.0000000e+00 1.2550000e+03 1.5750250e+06]
 [1.0000000e+00 1.1940000e+03 1.4256360e+06]
 [1.0000000e+00 1.4500000e+03 2.1025000e+06]
 [1.0000000e+00 1.4810000e+03 2.1933610e+06]
 [1.0000000e+00 1.4750000e+03 2.1756250e+06]
 [1.0000000e+00 1.4820000e+03 2.1963240e+06]
 [1.0000000e+00 1.4840000e+03 2.2022560e+06]
 [1.0000000e+00 1.5120000e+03 2.2861440e+06]
 [1.0000000e+00 1.6800000e+03 2.8224000e+06]
 [1.0000000e+00 1.6200000e+03 2.6244000e+06]
 [1.0000000e+00 1.7200000e+03 2.9584000e+06]
 [1.0000000e+00 1.8000000e+03 3.2400000e+06]
 [1.0000000e+00 4.4000000e+03 1.9360000e+07]
 [1.0000000e+00 4.2120000e+03 1.7740944e+07]
 [1.0000000e+00 3.9200000e+03 1.5366400e+07]
 [1.0000000e+00 3.2120000e+03 1.0316944e+07]
 [1.0000000e+00 3.1510000e+03 9.9288010e+06]
 [1.0000000e+00 3.1000000e+03 9.6100000e+06]
 [1.0000000e+00 2.7000000e+03 7.2900000e+06]
 [1.0000000e+00 2.6120000e+03 6.8225440e+06]
 [1.0000000e+00 2.7050000e+03 7.3170250e+06]
 [1.0000000e+00 2.5700000e+03 6.6049000e+06]
 [1.0000000e+00 2.4420000e+03 5.9633640e+06]
 [1.0000000e+00 2.3870000e+03 5.6977690e+06]
 [1.0000000e+00 2.2920000e+03 5.2532640e+06]
 [1.0000000e+00 2.3080000e+03 5.3268640e+06]
 [1.0000000e+00 2.2520000e+03 5.0715040e+06]
 [1.0000000e+00 2.2020000e+03 4.8488040e+06]
 [1.0000000e+00 2.1570000e+03 4.6526490e+06]
 [1.0000000e+00 2.1400000e+03 4.5796000e+06]
 [1.0000000e+00 4.0000000e+03 1.6000000e+07]
 [1.0000000e+00 4.2000000e+03 1.7640000e+07]
 [1.0000000e+00 3.9000000e+03 1.5210000e+07]
 [1.0000000e+00 3.5440000e+03 1.2559936e+07]
 [1.0000000e+00 2.9800000e+03 8.8804000e+06]
 [1.0000000e+00 4.3550000e+03 1.8966025e+07]
 [1.0000000e+00 3.1500000e+03 9.9225000e+06]
 [1.0000000e+00 3.0250000e+03 9.1506250e+06]
 [1.0000000e+00 3.4500000e+03 1.1902500e+07]
 [1.0000000e+00 4.4020000e+03 1.9377604e+07]
 [1.0000000e+00 3.4540000e+03 1.1930116e+07]
 [1.0000000e+00 8.9000000e+02 7.9210000e+05]]
[231.16788093 231.19868474 231.22954958 ... 739.2018995  739.45285011
 739.70386176]
Coefficients: [ 0.00000000e+00 -1.75650177e-02  3.05166076e-05]
intercept: 225.93740561055927
the model is y=225.93740561055927+(0.0*x)+(-0.017565017675036532*x^2)

3.4 可视化

4 案例实现——方法2

4.1 代码

import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
import pandas as pd
import warnings
 
warnings.filterwarnings(action="ignore", module="sklearn")
 
dataset = pd.read_csv('多项式线性回归.csv')
X = np.asarray(dataset.get('x'))
y = np.asarray(dataset.get('y'))
 
# 划分训练集和测试集
X_train = X[:-2]
X_test = X[-2:]
y_train = y[:-2]
y_test = y[-2:]
 
# fit_intercept 为 True
model1 = Pipeline([('poly', PolynomialFeatures(degree=2)), ('linear', LinearRegression(fit_intercept=True))])
model1 = model1.fit(X_train[:, np.newaxis], y_train)
y_test_pred1 = model1.named_steps['linear'].intercept_ + model1.named_steps['linear'].coef_[1] * X_test
print('while fit_intercept is True:................')
print('Coefficients: ', model1.named_steps['linear'].coef_)
print('Intercept:', model1.named_steps['linear'].intercept_)
print('the model is: y = ', model1.named_steps['linear'].intercept_, ' + ', model1.named_steps['linear'].coef_[1],
      '* X')
# 均方误差
print("Mean squared error: %.2f" % mean_squared_error(y_test, y_test_pred1))
# r2 score,0,1之间,越接近1说明模型越好,越接近0说明模型越差
print('Variance score: %.2f' % r2_score(y_test, y_test_pred1), '\n')
 
# fit_intercept 为 False
model2 = Pipeline([('poly', PolynomialFeatures(degree=2)), ('linear', LinearRegression(fit_intercept=False))])
model2 = model2.fit(X_train[:, np.newaxis], y_train)
y_test_pred2 = model2.named_steps['linear'].coef_[0] + model2.named_steps['linear'].coef_[1] * X_test + \
               model2.named_steps['linear'].coef_[2] * X_test * X_test
print('while fit_intercept is False:..........................................')
print('Coefficients: ', model2.named_steps['linear'].coef_)
print('Intercept:', model2.named_steps['linear'].intercept_)
print('the model is: y = ', model2.named_steps['linear'].coef_[0], '+', model2.named_steps['linear'].coef_[1], '* X + ',
      model2.named_steps['linear'].coef_[2], '* X^2')
# 均方误差
print("Mean squared error: %.2f" % mean_squared_error(y_test, y_test_pred2))
# r2 score,0,1之间,越接近1说明模型越好,越接近0说明模型越差
print('Variance score: %.2f' % r2_score(y_test, y_test_pred2), '\n')
 
plt.xlabel('x')
plt.ylabel('y')
# 画训练集的散点图
plt.scatter(X_train, y_train, alpha=0.8, color='black')
# 画模型
plt.plot(X_train, model2.named_steps['linear'].coef_[0] + model2.named_steps['linear'].coef_[1] * X_train +
         model2.named_steps['linear'].coef_[2] * X_train * X_train, color='red',
         linewidth=1)
plt.show()

4.2 结果

如果不用框架,需要自己手动对数据添加高阶项,有了框架就方便多了。sklearn 使用 Pipeline 函数简化这部分预处理过程。

PolynomialFeatures 中的degree=1时,效果和使用 LinearRegression 相同,得到的是一个线性模型,degree=2时,是二次方程,如果是单变量的就是抛物线,双变量的就是抛物面。以此类推。

这里有一个 fit_intercept 参数,下面通过一个例子看一下它的作用。

fit_intercept 为 True 时,coef_ 中的第一个值为 0,intercept_ 中的值为实际的截距。

fit_intercept False 时,coef_ 中的第一个值为截距,intercept_ 中的值为 0。

如图,第一部分是 fit_intercept 为 True 时的结果,第二部分是 fit_intercept 为 False 时的结果。

while fit_intercept is True:................
Coefficients:  [ 0.00000000e+00 -3.70858180e-04  2.78609637e-05]
Intercept: 204.25470490804574
the model is: y =  204.25470490804574  +  -0.00037085818009180454 * X
Mean squared error: 26964.95
Variance score: -3.61 
 
while fit_intercept is False:..........................................
Coefficients:  [ 2.04254705e+02 -3.70858180e-04  2.78609637e-05]
Intercept: 0.0
the model is: y =  204.2547049080572 + -0.0003708581801012066 * X +  2.7860963722809286e-05 * X^2
Mean squared error: 7147.78
Variance score: -0.22 

4.3 可视化

 到此这篇关于人工智能-python实现多项式回归的文章就介绍到这了,更多相关Python实现多项式回归内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 人工智能-Python实现多项式回归

本文链接: https://lsjlt.com/news/162599.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 人工智能-Python实现多项式回归
    目录1、概述1.1 有监督学习1.2 多项式回归2 概念3 案例实现——方法1 3.1 案例分析3.2 代码实现 3.3 结果 ...
    99+
    2024-04-02
  • 人工智能-Python实现岭回归
    1 概述 1.1 线性回归 对于一般地线性回归问题,参数的求解采用的是最小二乘法,其目标函数如下: 1.2 岭回归  岭回归(ridge regression) 是一种...
    99+
    2024-04-02
  • 人工智能—Python实现线性回归
    1、概述 (1)人工智能学习           (2)机器学习  (3)有监督学习  (4)线...
    99+
    2024-04-02
  • python人工智能算法之线性回归实例
    目录线性回归使用场景分析:总结:线性回归 是一种常见的机器学习算法,也是人工智能中常用的算法。它是一种用于预测数值型输出变量与一个或多个自变量之间线性关系的方法。例如,你可以使用线...
    99+
    2023-03-21
    python 线性回归算法 python 人工智能
  • Python如何实现多项式回归
    今天就跟大家聊聊有关Python如何实现多项式回归,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几...
    99+
    2023-06-26
  • pytorch实现多项式回归
    pytorch实现多项式回归,供大家参考,具体内容如下 一元线性回归模型虽然能拟合出一条直线,但精度依然欠佳,拟合的直线并不能穿过每个点,对于复杂的拟合任务需要多项式回归拟合,提高精...
    99+
    2024-04-02
  • 人工智能实战项目(python)+多领域实战练手项目
    人工智能实战项目 大家好,我是微学AI,本项目将围绕人工智能实战项目进行展开,紧密贴近生活,实战项目设计多个领域包括:金融、教育、医疗、地理、生物、人文、自然语言处理等;帮助各位读者结合机器学习与深度学习构建智能而且实用的人工智能简单系统,...
    99+
    2023-09-08
    人工智能 深度学习 计算机视觉 知识图谱
  • python人工智能算法之线性回归怎么使用
    这篇文章主要介绍“python人工智能算法之线性回归怎么使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python人工智能算法之线性回归怎么使用”文章能帮助大家解决问题。线性回归是一种常见的机器...
    99+
    2023-07-05
  • pytorch如何实现多项式回归
    这篇文章主要为大家展示了“pytorch如何实现多项式回归”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch如何实现多项式回归”这篇文章吧。pytorch实现多项式回归,供大家参考,具...
    99+
    2023-06-14
  • AI人工智能 Python实现人机对话
    在人工智能进展的如火如荼的今天,我们如果不尝试去接触新鲜事物,马上就要被世界淘汰啦~ 本文拟使用Python开发语言实现类似于WIndows平台的“小娜”,或者是IOS下的“Siri”。最终达到人机对话的效...
    99+
    2022-06-04
    人工智能 人机 AI
  • python人工智能深度学习入门逻辑回归限制
    目录1.逻辑回归的限制2.深度学习的引入3.深度学习的计算方式4.神经网络的损失函数1.逻辑回归的限制 逻辑回归分类的时候,是把线性的函数输入进sigmoid函数进行转换,后进行分类...
    99+
    2024-04-02
  • 怎么用python实现人工智能算法
    要使用Python实现人工智能算法,你可以按照以下步骤进行操作:1. 确定算法类型:首先,你需要确定你想要实现的人工智能算法类型,比...
    99+
    2023-10-11
    python 人工智能
  • Python人工智能实战之对话机器人的实现
    目录背景用到的技术主要流程代码模块Joke对象爬虫抓取笑话代码实现保存到sqlite数据库抓取笑话并保存到数据库背景 当我慢慢的开在高速公路上,宽敞的马路非常的拥挤!这时候我喜欢让...
    99+
    2024-04-02
  • 人工智能是是不是只能用python实现
    这篇文章主要介绍了人工智能是是不是只能用python实现,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、人工智能只能用python吗?并不是,只是相对其他语言python的...
    99+
    2023-06-14
  • C++ 函数的递归实现:递归在人工智能算法中的作用?
    递归函数通过调用自身并在特定条件下返回结果来实现。在人工智能算法中,递归广泛应用于深度优先搜索、动态规划、回溯和神经网络等技术。对于处理复杂问题,递归提供了高效且简洁的解决方案。 C+...
    99+
    2024-04-22
    人工智能 递归 python c++
  • Python人工智能语音合成功能怎么实现
    今天小编给大家分享一下Python人工智能语音合成功能怎么实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、 注册百度A...
    99+
    2023-07-05
  • Python人工智能实战之以图搜图的实现
    目录前言一、实验要求二、环境配置三、代码文件1、vgg.py2、index.py3、test.py四、演示1、项目文件夹2、相似度排序输出3、保存结果五、尾声前言 基于vgg网络和K...
    99+
    2024-04-02
  • 人工智能——K-Means聚类算法及Python实现
    目录1 概述1.1 无监督学习1.2 聚类1.3 K-Mean均值算法2 K-Mean均值算法 2.1 引入2.2 针对大样本集的改进算法:Mini Batch K-Mea...
    99+
    2024-04-02
  • Python人工智能实战之以图搜图怎么实现
    本篇内容介绍了“Python人工智能实战之以图搜图怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、实验要求给出一张图像后,在整个数...
    99+
    2023-06-30
  • Python人工智能语音合成实现案例详解
    目录正文一、 注册百度AI平台应用二、 编写Python代码正文 今天给大家介绍一下基于百度的AI语音技术SDK实现语音合成的案例,编程语言采用Python,希望对大家能有所帮助...
    99+
    2023-03-21
    Python人工智能语音合成 Python人工智能
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作