Python 官方文档:入门教程 => 点击学习
目录一、mediapipe是什么?二、使用步骤1.引入库2.主代码3.识别结果补充:一、mediapipe是什么? mediapipe官网 二、使用步骤 1.引入库 代码如下: im
mediapipe官网
代码如下:
import cv2
from mediapipe import solutions
import time
代码如下:
cap = cv2.VideoCapture(0)
mpHands = solutions.hands
hands = mpHands.Hands()
mpDraw = solutions.drawing_utils
pTime = 0
count = 0
while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(imgRGB)
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (25, 50), cv2.FONT_HERSHEY_PLaiN, 2, (255, 0, 0), 3)
cv2.imshow("Image", img)
cv2.waiTKEy(1)
以上就是今天要讲的内容,本文仅仅简单介绍了mediapipe的使用,而mediapipe提供了大量关于图像识别等的方法。
下面看下基于mediapipe人脸网状识别。
1.下载mediapipe库:
pip install mediapipe
2.完整代码:
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture("3.mp4")
with mp_face_mesh.FaceMesh(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve perfORMance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_mesh.process(image)
time.sleep(0.02)
# Draw the face mesh annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACE_CONNECTIONS,
landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec)
cv2.imshow('MediaPipe FaceMesh', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
到此这篇关于python+mediapipe+OpenCV实现手部关键点检测功能(手势识别)的文章就介绍到这了,更多相关Python mediapipe opencv手势识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: python+mediapipe+opencv实现手部关键点检测功能(手势识别)
本文链接: https://lsjlt.com/news/161926.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0