返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++实现AVL树的基本操作指南
  • 863
分享到

C++实现AVL树的基本操作指南

2024-04-02 19:04:59 863人浏览 安东尼
摘要

目录AVL树的概念AVL树的插入AVL树的四种旋转右单旋左单旋左右双旋右左双旋查找其他接口析构函数拷贝构造拷贝赋值总结AVL树的概念 二叉搜索树虽可以缩短查找的效率,但如果数据有序或

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 平衡因子的计算是右子树的高度减去左子树的高度的差值结果

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log N) ,搜索时间复杂度O( log N)。

AVL树节点的定义

template<class K, class V>
struct AVLTreenode 
{
	AVLTreeNode<K, V>* _left; //左孩子
	AVLTreeNode<K, V>* _right; //右孩子
	AVLTreeNode<K, V>* _parent; //父亲结点
	 
	pair<K, V> _Kv; //键值
	int _bf; //平衡因子

	//构造函数
	AVLTreeNode(const pair<K, V>& Kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_Kv(Kv)
		,_bf(0)
	{ }

};

AVL树的定义

template<class K, class V>
class AVLTree 
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree() 
		:_root(nullptr)
	{}

private:
	Node* _root;
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入

过程可以分为两步:

按照二叉搜索树的方式插入新节点

与根结点比较如果比根大就往右子树插入,如果比根小就往左子树插入,直到走到合适的位置就插入,由于这里是三叉链所以需要处理结点之间的关联关系

bool Insert(const pair<K, V> &kv) 
	{
		if (!_root) _root = new Node(kv); //初始根节点

		Node* cur = _root;
		Node* parent = _root;
		while (cur) 
		{
			K key = cur->_Kv.first;
			if (key > kv.first) //比根结点的key值小,
			{
				parent = cur;
				cur = cur->_left;
			}
			else if(key < kv.first)//比根结点的key值大,
			{
				parent = cur;
				cur = cur->_right;
			}
			else 
			{
				return false;  //插入失败
			}
		}
		
		//开始插入
		cur = new Node(kv);
		Node* newNode = cur;
		if (parent->_Kv.first > newNode->_Kv.first) //新插入的结点key值比根节点小就插入到左子树
		{
			parent->_left = newNode;
			newNode->_parent = parent;
		}
		else		//新插入的结点key值比根节点大就插入到右子树
		{
			parent->_right = newNode;
			newNode->_parent = parent;
		}
	}

调整节点的平衡因子

当左右子树的高度发生了变化,那么就需要对父亲及祖先路径上的所有结点的平衡因子进行调整

//更新祖先路径的所以结点的平衡因子
		
	while (parent) 
	{
		if (parent->_left == cur) parent->_bf--;   //1、
		if (parent->_right == cur) parent++;	   //2、
		if (parent->_bf == 0) break; 			  //3、
		if (parent->_bf == -1 || parent->_bf == 1)//4、 
		{
			cur = parent;
			parent = parent->_parent;
		}
		if (parent->_bf == -2 || parent->_bf == 2) //5、
		{
			//旋转
			if (parent->_bf == -2) 
			{
				if (cur->_bf == -1) RotateR(parent); //左边高,右单旋
				else RotateLR(parent); //左右双旋
			}
			else //右 parent->_bf == 2
			{
				if (cur->_bf == 1) RotateL(parent);//右边高左单旋转
				else RotateRL(parent); //右左双旋
			}

			break;
		}
	}

AVL树的四种旋转

旋转的原则是遵循搜索树的规则,尽量让两边平衡

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

右单旋

新节点插入较高左子树的左侧—左左:右单旋

不管是哪种单旋都得考虑两种情况:

1、局部旋转,如果parent并不是树的_root结点,那么就需要调整subL和根结点的关系

2、独立旋转,parent就是树的_root结点,那么subL就是旋转后的根节点了

3、subLR有可能为null

//右单旋
void RotateR(Node* parent) 
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR; 
	if (subLR) subLR->_parent = parent;  //防止subLR为nullptr

	subL->_right = parent;
	Node* parent_parent = parent->_p	arent; //指针备份
	parent->_parent = subL;
	if (_root == parent) //如果parent就是树的根 
	{
		_root = subL;  //subL取代parent
		_root->_parent = nullptr;
	}
	else  //如果parent并不是树的根
	{
		if (parent_parent->_left == parent) parent->_left = subL;
		else parent_parent->_right = subL;

		subL->_parent = parent_parent; //subL去做parent_parent的孩子
	}
	//调节平衡因子
	subL->_bf = parent->_bf = 0;
}

左单旋

新节点插入较高右子树的右侧—右右:左单旋

跟右单旋几乎是一样的做法

1、局部旋转,如果parent并不是树的_root结点,那么就需要调整subL和根结点的关系

2、独立旋转,parent就是树的_root结点,那么subL就是旋转后的根节点了

3、subRL有可能为null

//左单旋
void RotateL(Node* parent) 
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	
	parent->_right = subRL;
	if (subRL) subRL->_parent = parent;
	
	subR->_left = parent;
	Node* parent_parent = parent->_parent;
	parent->_parent = subR;
	
	if (_root == parent) 
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else  
	{
		if (parent_parent->_left == parent) parent_parent->_left = subR;
		else parent_parent->_right = subR;

		subR->_parent = parent_parent;
	}
	subR->_bf = parent->_bf = 0;
}

左右双旋

新节点插入较高左子树的右侧—左右:先左单旋再右单旋

1、新增结点在b或c都会影响左右子树的高度,从而引发双旋

h > 0情况一:


h > 0,情况二:


h == 0情况三:

//左右旋转
	void RotateLR(Node* parent) 
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == -1)  //h > 0,新增结点在b
		{
			parent->_bf = 1;
			subLR->_bf = 0;
			subL->_bf = 0;
		}
		else if (bf == 1) //h > 0,新增结点在c
		{
			subL->_bf = -1;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else if(bf == 0) //h = 0
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = 0;
		}
		
	}

右左双旋

右左双旋跟左右双旋的情况基本是类似的,这里就不列举多种情况了

新节点插入较高右子树的左侧—右左:先右单旋再左单旋

	//右左旋转
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);
		if (bf == -1)  //h > 0,新增结点在b
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 1) //h > 0,新增结点在c
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 0)//h = 0
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}

	}

查找

Node* Find(const K& key) 
{
	Node* cur = _root;
	while (cur) 
	{
		if (key > cur->_Kv.first) cur = cur->_right; //左子树
		else if (key < cur->_Kv.first) cur = cur->_left; //右子树
		else return cur;
	}
}

其他接口

判断是不是平衡二叉树

int height(Node* root) //求高度
{
	return !root ? 0 
		   : max(height(root->_left), 
			 height(root->_right)) + 1;
}

void _Inorder(Node* root)//中序遍历 
{
	if (!root) return;
	_Inorder(root->_left);
	printf("%d : %d\n",root->_Kv.first, root->_Kv.second);
	_Inorder(root->_right);
}

//判断是不是平衡二叉树
bool IsAVLTree() 
{
	return _IsAVLTree(_root);
}

bool _IsAVLTree(Node* root)
{
	if (!root) return true;
	int left = height(root->_left);
	int right = height(root->_right);
	//检查平衡因子	
	if (right - left != root->_bf)
	{
		printf("错误的平衡因子 %d :%d\n", root->_Kv.first, root->_Kv.second);
		return false;
	}
	return (abs(right - left) < 2)
		&& _IsAVLTree(root->_left)
		&& _IsAVLTree(root->_right);
}

析构函数

//析构函数
~AVLTree()
{
	Destroy(_root);
	_root = nullptr;
}

void Destroy(Node *root)//后序销毁结点
{
	if (!root) return;
	Destroy(root->_left);
	Destroy(root->_right);
	delete root;
}

拷贝构造

Node* copy(Node* cp)
{
	if (!cp) return nullptr;

	Node* newnode = new Node(cp->_Kv);
	newnode->_left = copy(cp->_left);
	newnode->_right = copy(cp->_right);
	return newnode;
}

//拷贝构造
AVLTree(const AVLTree<K, V>& job)
{
	if(&job != this)
	_root = copy(job._root);
}

拷贝赋值

void operator=(AVLTree<K, V> tmp)
{
	if (&tmp != this)
	swap(tmp._root, this->_root);
}

重载operator[ ]

V& operator[](const K& key)
{
	return (Insert(make_pair(key, V())).first)->_Kv.second;
}

AVL树的完整实现代码博主已经放在 git.

总结

到此这篇关于c++实现AVL树的文章就介绍到这了,更多相关C++实现AVL树内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: C++实现AVL树的基本操作指南

本文链接: https://lsjlt.com/news/161641.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C++实现AVL树的基本操作指南
    目录AVL树的概念AVL树的插入AVL树的四种旋转右单旋左单旋左右双旋右左双旋查找其他接口析构函数拷贝构造拷贝赋值总结AVL树的概念 二叉搜索树虽可以缩短查找的效率,但如果数据有序或...
    99+
    2024-04-02
  • C++实现AVL树的完整代码
    AVL树的介绍 AVL树是一种自平衡的二叉搜索树,它通过单旋转(single rotate)和双旋转(double rotate)的方式实现了根节点的左子树与右子树的高度差不超过1...
    99+
    2024-04-02
  • C++实现AVL树的示例详解
    目录AVL 树的概念AVL 树的实现节点的定义接口总览插入旋转AVL 树的概念 也许因为插入的值不够随机,也许因为经过某些插入或删除操作,二叉搜索树可能会失去平衡,甚至可能退化为单链...
    99+
    2023-03-03
    C++实现AVL树 C++ AVL树
  • Python文件基本操作实用指南
    文件的存储方式 在计算机中,文件是以 二进制的方式保存在磁盘上的 文本文件和二进制文件 文本文件 可以使用文本编辑软件查看...
    99+
    2024-04-02
  • Python基本文件操作实用指南
    目录一、前言二、创建和打开文件1.打开一个不存在的文件时先创建该文件2.以二进制形式打开文件3.打开文件时指定编码方式三、关闭文件四、打开文件时使用with语句五、写入文件内容六、读...
    99+
    2024-04-02
  • MySQL5.7中的JSON基本操作指南
    前言 因为项目需要,存储字段存储成了JSON格式,在项目中是将查询出来的值通过jackson转成相应的bean进行处理的,觉得不够简单方便。 MySQL从5.7版本开始就支持JSON格式的数据,操作用起来挺...
    99+
    2024-04-02
  • C语言实现BST二叉排序树的基本操作
    本文实例为大家分享了C语言实现BST二叉排序树的基本操作代码,供大家参考,具体内容如下 BST-二叉排序树的几个基本操作。 头文件声明与函数定义 #include <std...
    99+
    2024-04-02
  • C++数据结构之AVL树的实现
    目录1.概念(1)二叉搜索树的缺点(2)定义节点2.插入(1)拆分(2)找节点与插节点(3)更新平衡因子与旋转3.判断4.完整代码及测试代码完整代码测试代码1.概念 (1)二叉搜索树...
    99+
    2024-04-02
  • C语言实现顺序表的基本操作指南(注释很详细)
    目录创建一个结构体用于存放顺序表相关数据初始化顺序表插入元素先检查容量是否够用删除元素元素修改查找元素排序元素元素反转源码SeqList.ctest.cSeqList.h总结创建一个...
    99+
    2024-04-02
  • Java实现二叉树的基本操作详解
    目录1. 二叉树结点的构成2. 二叉树的遍历2.1 前序遍历2.2 中序遍历2.3 后序遍历3. 获取整棵二叉树的节点个数4. 获取二叉树叶子节点的个数5. 获取第K层节点的个数6....
    99+
    2022-11-13
    Java二叉树操作 Java二叉树
  • MySQL中库的基本操作指南(推荐!)
    目录查看数据库创建数据库删除数据库字符集/字符校验修改数据库帮助命令数据库存储引擎查看默认存储引擎存储引擎简介存储引擎的选择总结查看数据库 语法格式: SHOW {DATABASES | SCHEMAS} [LI...
    99+
    2023-02-18
    mysql数据库基本操作 mysql 库 mysql建库
  • C++顺序表的基本操作实现
    目录1.顺序表的定义2.顺序表上基本操作的实现完整代码如下:总结1.顺序表的定义 线性表的顺序存储又称顺序表。它是用一组地址连续的存储单元依次存储线性表中的数据元素,从而使得逻辑上相...
    99+
    2024-04-02
  • JAVA二叉树的基本操作
    目录记录二叉树的基本操作DEMO1、创建一个二叉树类2、然后创建二叉树的节点记录二叉树的基本操作DEMO 1、创建一个二叉树类 这里约束了泛型只能为实现了Comparable这个接口的类型。 public class BinaryT...
    99+
    2021-12-08
    JAVA二叉树的操作 JAVA二叉树
  • 关于Mysql(MariaDB)的基本操作命令指南
    MYSQL基本命令操作 1.登录方法: mysql -u root -p 2.显示所有数据库: show databases; 3.操作指定数据库(以information_schema为例) use in...
    99+
    2024-04-02
  • C语言中单链表的基本操作指南(增删改查)
    目录1.链表概述2.链表的基本使用2.0 准备工作2.1 创建节点(结构体)2.2 全局定义链表头尾指针 方便调用2.3 创建链表,实现在链表中增加一个数据(尾添加)————增2.4...
    99+
    2024-04-02
  • C语言实现链队列基本操作
    队列的链式存储结构实现,相比于循环队列实现要复杂一些,但是没有队满的限制。 头文件声明 #include <stdio.h> #include <stdlib....
    99+
    2024-04-02
  • 利用Python连接Oracle数据库的基本操作指南
    这里我们采用的是使用Oracle数据库进行相关操作 在连接数据库之间,应下载相应的工具包cx_Oracle,在你安装的python文件夹中找到script,在路径栏点击输入cmd回车进入命令行输入 pip instal...
    99+
    2022-06-13
    python如何连接oracle python 连接oracle Python操作oracle数据库
  • pandas学习之txt与sql文件的基本操作指南
    目录前言1.导入txt文件2.导入sql文件2.1 安装依赖库pymysql3.小结总结前言 Pandas是python的一个数据分析包,是基于NumPy的一种工具提供了大量数据结构...
    99+
    2024-04-02
  • Java基础之二叉搜索树的基本操作
    目录一、二叉搜索树插入元素二、搜索指定节点三、删除节点方式一四、删除节点方式二五、运行结果一、二叉搜索树插入元素 class Node { int v...
    99+
    2024-04-02
  • 基于restyorm的ActiveRecord操作数据指南
    目录在Resty中ActiveRecord表现为两部分:ModelRecord使用方法1.在application.properties配置jdbc连接,连接池等2.在AppConf...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作