返回顶部
首页 > 资讯 > 后端开发 > Python >python数据结构之搜索讲解
  • 290
分享到

python数据结构之搜索讲解

2024-04-02 19:04:59 290人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

目录1. 普通搜索2. 顺序搜索1.1 无序下的顺序查找1.2 有序下的顺序查找2.二分查找3.散列查找3.1 几种散列函数3.2 处理散列表冲突3.3 散列表的实现(加1重复)4.

往期学习:

python数据类型: Python数据结构:数据类型.
python的输入输出: python数据结构之输入输出及控制和异常.
python面向对象: python数据结构面向对象.
python算法分析: python数据结构之算法分析.
python栈、队列和双端队列:python数据结构栈、队列和双端队列.
python递归: python数据结构之递归.

上一期讲的递归,对于初学者其实是不太友好的,递归需要自己多去接触,自己多画画图,这样可以加强理解递归的过程,本期我们要讲的内容是搜索,也可以叫查找。我将讲解几种最为普遍的查找算法。

1. 普通搜索

搜索是指从元素集合中找到某个特定元素的算法过程。搜索过程通常返回 True 或 False, 分别表示元素是否存在。
python中提供了 in 方法可以判断元素是否存在列表中:


# python提供in函数进行搜索
a=[3,4,5,8,'t']
't' in a
9 in a

结果如下:

2. 顺序搜索

顺序搜索故名思义:从列表中的第一个元素开始,沿着默认的顺序逐个查看, 直到找到目标元素或者查完列表。如果查完列表后仍没有找到目标元素,则说明目标元素不在列表中。

顺序搜索过程:

1.1 无序下的顺序查找

无序下的顺序搜索很有特点,列表无序,只好一个一个去比较,寻找元素。


#顺序查找
def sequentialsearch(testlist,item):
    pos=0
    found=False
    while pos<len(testlist) and not found:
        if testlist[pos]==item:
            found=True
        else:
            pos=pos+1
    return found

结果如下:

分析一下这种顺序查找,这种查找方式,最好的方式就寻找一次就成功了,最坏的情况的需要查找n次,于是时间复杂度是O(n)

1.2 有序下的顺序查找

有序下的顺序查找就是所查找的列表是有序的,


# 有序下的顺序搜索
def ordersearch(testlist,item):
    pos=0
    found=False
    stop=False
    while pos<len(testlist) and not found and not stop:
        if testlist[pos]==item:
            found=True
        else:
            if testlist[pos]>item:
                stop=True
            else:
                pos=pos+1
    return found

结果如下:

分析一下这种搜索方法,正常情况下来说,最好情况下,搜索1次就能成功,最差情况只需要n/2次即可搜索完成,但时间复杂度依旧是O(n),只有当列表中不存在目标元素时,有序排列的元素才会提高顺序搜索的效率。

2.二分查找

二分查找:是利用列表有序的这个原理,从中间的元素着手。如果这个元素就是目标元素,那就立即停止搜索;如果不是,则可以利用列表有序的特性,排除一半的元素。如果目标元素比中间的元素大,就可以直接排除列表的左半部分和中间的元素。这是因为,如果列表包含目标元素,它必定位于右半部分。

在有序整数列表中进行二分搜索:

二分查找实现方式:


def binarysearch(testlist,item):
    testlist.sort()#排序
    left=0#左指针
    right=len(testlist)-1#右指针
    found=False
    while left<=right and not found:
        mid=(left+right)//2#取中间值
        if testlist[mid]==item:
            found=True
        else:
            if testlist[mid]<item:
                left=mid+1
            else:
                right=mid-1
    return found

看看效果:

二分查找递归实现:


def binarysearch2(testlist,item):
     if len(testlist) == 0: 
        return False 
     else: 
        mid = len(testlist) // 2 
        if testlist[mid] == item: 
            return True 
        else: 
            if item < testlist[mid]: 
                return binarysearch2(testlist[:mid], item) 
            else: 
                return binarysearch2(testlist[mid+1:], item)

看看效果:

总结一下二分查找:在进行二分搜索时,每一次比较都将待考虑的元素减半,。那么,要检查完整个列表,二分搜索算法最多要比较多少次呢?假设列表共有 n 个元素,第一次比较后剩下n 个元素,第 2 次比较2后剩下n /4个元素,接下来是n/8 ,然后是n/16 ,依此类推。列表能拆分多少次?

二分搜索算法的表格分:

3.散列查找

散列查找:通过散列构建一个时间复杂度为 O(1)的数据结构。我们平常听的最多哈希表就是散列的一种方式。
散列表:散列表是元素集合,其中的元素以一种便于查找的方式存储。散列表中的每个位置通常被称 为槽,其中可以存储一个元素。槽用一个从 0 开始的整数标记,例如 0 号槽、1 号槽、2 号槽, 等等。初始情形下,散列表中没有元素,每个槽都是空的。可以用列表来实现散列表,并将每个元素都初始化为 Python 中的特殊值 None。下图展示了大小 m 为 11 的散列表。也就是说,表中有 m 个槽,编号从 0 到 10。

有11 个槽的散列表:

散列函数:将散列表中的元素与其所属位置对应起来。对散列表中的任一元素,散列函数返回 一个介于 0 和 m – 1 之间的整数。假设有一个由整数元素 54、26、93、17、77 和 31 构成的集 合。首先来看第一个散列函数,它有时被称作“取余函数”,即用一个元素除以表的大小,并将 得到的余数作为散列值(h(item) = item%11)。下图给出了所有示例元素的散列值。取余函数是一个很常见的散列函数,这是因为结果必须在槽编号范围内。

使用余数作为散列值:

计算出散列值后,就可以将每个元素插入到相应的位置,如图 5-5 所示。注意,在 11 个槽 中,有 6 个被占用了。占用率被称作载荷因子,记作λ \lambdaλ,定义如下:

有 6 个元素的散列表:

3.1 几种散列函数

给定一个元素集合,能将每个元素映射到不同的槽,这种散列函数称作完美散列函数。如果元素已知,并且集合不变,那么构建完美散列函数是可能的。不幸的是,给定任意一个元素集合,没有系统化方法来保证散列函数是完美的。所幸,不完美的散列函数也能有不错的性能。

  • 折叠法:先将元素切成等长的部分(最后一部分的长度可能不同),然后将这些部分相加,得到散列值。假设元素是电话号码 436-555-4601,以 2 位为一组进行切分,得到 43、65、55、46 和 01。将这些数字相加后,得到 210。
  • 平方取中法:先将元素取平方,然后提取中间几位数。如果元素是 44,先计算 442=1936,然后提取中间两位 93,继续进行取余的步骤。
  • 字符编码:采用python中的ord函数将单词“cat”看作序数值序列,再将这些序数值相加,并采用取余法得到散列值。

3.2 处理散列表冲突

完美的散列表,一个元素只对应着一个卡槽,可是如果当2个元素被分配到一个卡槽时,必须通过一种系统化方法在散列表中安置第二个元素。这个过程被称为处理冲突。

开发定址法:在散列表中找到另一个空槽,用于放置引起冲突的元素。简单的做法是从起初的散列值开始,顺序遍历散列表,直到找到一个空槽。注意,为了遍历散列表,可能需要往回检查第一个槽。(例如:将(54, 26, 93, 17, 77, 31, 44, 55, 20)放入卡槽中。)

3.3 散列表的实现(加1重复)

哈希散列的实现:


#哈希表
class HashTable:
    def __init__(self): 
        self.size = 11 
        self.slots = [None] * self.size 
        self.data = [None] * self.size
    def put(self, key, data): 
        hashvalue = self.hashfunction(key, len(self.slots)) 
        if self.slots[hashvalue] == None: 
            self.slots[hashvalue] = key
            self.data[hashvalue] = data 
        else: 
            if self.slots[hashvalue] == key: 
                self.data[hashvalue] = data #替换 
            else: 
                nextslot = self.rehash(hashvalue, len(self.slots)) 
                while self.slots[nextslot] != None and self.slots[nextslot] != key: 
                    nextslot = self.rehash(nextslot, len(self.slots))
                if self.slots[nextslot] == None: 
                    self.slots[nextslot] = key 
                    self.data[nextslot] = data
                else: 
                    self.data[nextslot] = data #替换 
    def hashfunction(self, key, size): 
        return key%size 
    def rehash(self, oldhash, size): 
        return (oldhash + 1)%size

#get函数
    def get(self, key): 
        startslot = self.hashfunction(key, len(self.slots)) 
        data = None 
        stop = False 
        found = False 
        position = startslot
        while self.slots[position] != None and not found and not stop: 
            if self.slots[position] == key: 
                found = True 
                data = self.data[position] 
            else:  
                position=self.rehash(position, len(self.slots)) 
                if position == startslot: 
                    stop = True 
                    return data 
    def __getitem__(self, key): 
        return self.get(key) 
    def __setitem__(self, key, data): 
        self.put(key, data)



结果如下:

我们分析一下散列查找:在最好情况下,散列搜索算法的时间复杂度是 O(1),即常数阶。但可能发生冲突,所以比较次数通常不会这么简单。

4.参考资料

到此这篇关于python数据结构之搜索讲解的文章就介绍到这了,更多相关python搜索讲解内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: python数据结构之搜索讲解

本文链接: https://lsjlt.com/news/160562.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python数据结构之搜索讲解
    目录1. 普通搜索2. 顺序搜索1.1 无序下的顺序查找1.2 有序下的顺序查找2.二分查找3.散列查找3.1 几种散列函数3.2 处理散列表冲突3.3 散列表的实现(加1重复)4....
    99+
    2024-04-02
  • Java数据结构之二叉搜索树详解
    目录前言性质实现节点结构初始化插入节点查找节点删除节点最后前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不...
    99+
    2024-04-02
  • java数据结构之搜索二叉树
    本文实例为大家分享了java数据结构之搜索二叉树的具体代码,供大家参考,具体内容如下 搜索二叉树的定义是:在一个二叉树上,左节点一定比父节点小,右节点一定比父节点大,其他定义跟二叉树...
    99+
    2024-04-02
  • python数据结构之递归方法讲解
    目录1.递归概念2. 递归三原则2.1 实现任意进制的数据转换今天我们来学习python中最为重要的内容之递归,对以往内容感兴趣的同学可以查看下面: python数据类型: pyth...
    99+
    2024-04-02
  • C++数据结构之二叉搜索树的实现详解
    目录前言介绍实现节点的实现二叉搜索树的查找二叉搜索树的插入二叉搜索树的删除总结前言 今天我们来学一个新的数据结构:二叉搜索树。 介绍 二叉搜索树也称作二叉排序树,它具有以下性质: 非...
    99+
    2024-04-02
  • Java数据结构之图的两种搜索算法详解
    目录前言深度优先搜索算法API设计代码实现广度优先搜素算法API设计代码实现案例应用前言 在很多情况下,我们需要遍历图,得到图的一些性质,例如,找出图中与指定的顶点相连的所有顶点,或...
    99+
    2022-11-13
    Java数据结构 图搜索 Java 图 搜索算法 Java 数据结构 图
  • C++数据结构之搜索二叉树的实现
    目录零.前言1.概念2.作用3.迭代实现(1)查找(2)插入(3)删除4.递归实现(1)查找(2)插入(3)删除5.key/value模型的应用(1)对应查找(2)判断出现次数6.总...
    99+
    2024-04-02
  • Java数据结构之二叉搜索树实例分析
    这篇文章主要介绍“Java数据结构之二叉搜索树实例分析”,在日常操作中,相信很多人在Java数据结构之二叉搜索树实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java数据结构之二叉搜索树实例分析”的疑...
    99+
    2023-06-30
  • C++详解数据结构中的搜索二叉树
    目录定义查找某个元素构造搜索二叉树往搜索二叉树中插入元素搜索二叉树删除节点定义 搜索二叉树,也称有序二叉树,排序二叉树,是指一棵空树或者具有下列性质的二叉树: 1、若任意节点的左子树...
    99+
    2024-04-02
  • Python数据结构之栈详解
    目录0. 学习目标1. 栈的基本概念1.1 栈的基本概念1.2 栈抽象数据类型1.3 栈的应用场景2. 栈的实现2.1 顺序栈的实现2.1.1 栈的初始化2.2 链栈的实现2.3 栈...
    99+
    2024-04-02
  • 用 PHP 构建先进的搜索树数据结构
    使用 php 构建高级搜索树涉及创建节点类 (node) 和搜索树类 (searchtree),以及实现插入、查找和删除元素的方法。这些元素以对数时间复杂度存储在一个二叉树中,每个节点包...
    99+
    2024-05-07
    php 搜索树
  • Java数据结构之Map与Set专篇讲解
    目录①只出现一次的数字②宝石与石头③坏键盘打字④复制带随机指针的链表①只出现一次的数字 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次...
    99+
    2024-04-02
  • Java深入了解数据结构之二叉搜索树增插删创详解
    目录①概念②操作-查找③操作-插入④操作-删除1. cur.left == null2. cur.right == null3. cur.left != null &&...
    99+
    2024-04-02
  • Python数据结构之图的存储结构详解
    一、图的定义 图是一种比树更复杂的一种数据结构,在图结构中,结点之间的关系是任意的,任意两个元素之间都可能相关,因此,它的应用极广。图中的数据元素通常被称为顶点 ( V e r t ...
    99+
    2024-04-02
  • python数据结构之quick_sor
    Quick sort , also known as partition-exchange sort, divides the data to be sorted into two separate parts by a single s...
    99+
    2023-01-30
    数据结构 python quick_sor
  • python数据结构之 set
     在数学概念中,被意为整合元素的定义区域在python中,set最大的作用是用来去重 set常见操作:In [158]: s ={1,1,1,1,2,22,33,3,3,3} In [159]: sOut[159]: {1,2, 3, 22...
    99+
    2023-01-31
    数据结构 python set
  • 详解python数据结构之栈stack
    前言 栈(Stack)是一种运算受限的线性表。 按照先进后出(FILO,First In Last Out)的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶。栈只能在一端进行插入和删除操作。 文章内容包含: ...
    99+
    2022-06-02
    python 栈stack python数据结构
  • Python基础之数据结构详解
    目录一、列表1.1 列表更新元素1.2 列表增加元素1.3 列表删除元素1.4 列表的其他操作二、元组2.1 删除元组2.2 元组的其他操作三、字典3.1 字典删除元素3.2 字典的...
    99+
    2024-04-02
  • Python数据结构之队列详解
    目录0. 学习目标1. 队列的基本概念1.1 队列的基本概念1.2 队列抽象数据类型1.3 队列的应用场景2. 队列的实现2.1 顺序队列的实现2.2 链队列的实现2.3 队列的不同...
    99+
    2024-04-02
  • Python数据结构之链表详解
    目录0.学习目标1.线性表的链式存储结构1.1指针相关概念1.2指针结构1.3结点1.4结点类2.单链表的实现2.1单链表的初始化2.2获取单链表长度2.3读取指定位置元素2.4查找...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作