返回顶部
首页 > 资讯 > 后端开发 > Python >使用PythonNumPy库绘制渐变图案
  • 944
分享到

使用PythonNumPy库绘制渐变图案

2024-04-02 19:04:59 944人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录1. 导入模块2. 基本绘画流程3. 生成随机彩色图像4. 生成渐变色图像5. 在渐变色背景上画曲线6. 使用颜色映射(ColORMap)7. 展示NumPy的魅力NumPy也可

NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画得更好、画得更快!比如下面这幅画,只需要10行代码就可以画出来。若能整明白这10行代码,就意味着叩开了NumPy的大门。请打开你的python IDLE,跟随我的脚步,一起来体验一下交互式编程的乐趣吧,看看如何用NumPy画图,以及用NumPy可以画出什么样的图画来。

1. 导入模块

仅导入NumPy就可以完成绘画过程,PIL的Image模块只是用来显示或者保存绘画结果。若能邀请Matplotlib的ColorMap来帮忙的话,处理颜色就会轻松很多,色彩也会更丰富,但这并不意味着ColorMap是必需的。


>>> import numpy as np
>>> from PIL import Image
>>> from matplotlib import cm as mplcm

2. 基本绘画流程

借助于Image.fromarray()函数,可以将NumPy生成的数组转为PIL对象。PIL对象的show()方法可以直接显示图像,save()方法则可以将图像保存为文件。这一系列的操作过程中,有一个非常关键的知识点:NumPy数组的类型必须是单字节无符号整型,即np.uint8或np.ubyte类型。下面的代码使用NumPy的随机子模块random生成了100行300列的二维数组,转换为宽300像素高100像素的随机灰度图并直接显示出来。


>>> im = np.random.randint(0, 255, (100,300), dtype=np.uint8)
>>> im = Image.fromarray(im)
>>> im.show() # 或者im.save(r'd:\gray_300_100.jpg')保存为文件

3. 生成随机彩色图像

上面的代码中,如果random生成的数组包含3个通道,就会得到一幅彩色的随机图像。


>>> im = np.random.randint(0, 255, (100,300,3), dtype=np.uint8)
>>> Image.fromarray(im, mode='RGB').show()

4. 生成渐变色图像

np.linspace()函数类似于Python的range()函数,返回的是浮点数的等差序列,经过np.tile()重复之后,分别生成RGB通道的二维数组,再用np.dstack()合并成三维数组,最终输出一幅渐变色图像。


>>> r = np.tile(np.linspace(192,255, 300, dtype=np.uint8), (600,1)).T
>>> g = np.tile(np.linspace(192,255, 600, dtype=np.uint8), (300,1))
>>> b = np.ones((300,600), dtype=np.uint8)*224
>>> im = np.dstack((r,g,b))
>>> Image.fromarray(im, mode='RGB').show()

5. 在渐变色背景上画曲线

对图像数组中的特定行列定位之后,再修改其颜色,就可以得到期望的结果。


>>> r = np.tile(np.linspace(192,255, 300, dtype=np.uint8), (600,1)).T
>>> g = np.tile(np.linspace(192,255, 600, dtype=np.uint8), (300,1))
>>> b = np.ones((300,600), dtype=np.uint8)*224
>>> im = np.dstack((r,g,b))
>>> x = np.arange(600)
>>> y = np.sin(np.linspace(0, 2*np.pi, 600))
>>> y = np.int32((y+1)*0.9*300/2 + 0.05*300)
>>> for i in range(0, 150, 6):
	im[y[:-i],(x+i)[:-i]] = np.array([255,0,255])
	
>>> Image.fromarray(im, mode='RGB').show()

6. 使用颜色映射(ColorMap)

颜色映射(ColorMap)是数据可视化必不可少的概念,枯燥无趣的数据正是经过颜色映射之后才变得五颜六色、赏心悦目的。Matplotlib的cm子模块提供了7大类共计82种颜色映射表,每种映射表名字之后附加“_r” ,可以获得该映射表的反转版本。

下面是专属定制类中jet颜色映射表和分段阶梯类中Paired颜色映射表的色带图。

Matplotlib的cm子模块使用起来也非常简单。下面的代码有助于理解颜色映射(ColorMap)的机制、熟悉cm对象的使用方法。


>>> cm1 = mplcm.get_cmap('jet') # jet是专属定制类的ColorMap
>>> cm1.N # jet有256种颜色
256
>>> cm1(0) # 返回序号为0的颜色
(0.0, 0.0, 0.5, 1.0)
>>> cm1(128) # 返回序号为128的颜色
(0.4901960784313725, 1.0, 0.4775458570524984, 1.0)
>>> cm1(255) # 返回序号为255的颜色
(0.5, 0.0, 0.0, 1.0)
>>> cm2 = mplcm.get_cmap('Paired') # Paired是分段阶梯类的ColorMap
>>> cm2.N # Paired有12种颜色
12
>>> cm2(0) # 返回序号为0的颜色
(0.6509803921568628, 0.807843137254902, 0.8901960784313725, 1.0)
>>> cm2(11) # 返回序号为11的颜色
(0.6941176470588235, 0.34901960784313724, 0.1568627450980392, 1.0)

7. 展示NumPy的魅力

对于一幅图像(假如图像有9个像素宽7个像素高),可以很容易地得到由每个像素的行号组成的二维数组(以i表示),以及由每个像素的列号组成的二维数组(以j表示)。


>>> w, h = 9, 7
>>> i = np.repeat(np.arange(h), w).reshape(h, w)
>>> j = np.tile(np.arange(w), (h,1))
>>> i
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 2, 2, 2],
       [3, 3, 3, 3, 3, 3, 3, 3, 3],
       [4, 4, 4, 4, 4, 4, 4, 4, 4],
       [5, 5, 5, 5, 5, 5, 5, 5, 5],
       [6, 6, 6, 6, 6, 6, 6, 6, 6]])
>>> j
array([[0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8],
       [0, 1, 2, 3, 4, 5, 6, 7, 8]])

稍加变换,就得到各个像素在以图像中心点为原点的平面直角坐标系里的坐标。


>>> i = i - h//2
>>> j = j - w//2
>>> i
array([[-3, -3, -3, -3, -3, -3, -3, -3, -3],
       [-2, -2, -2, -2, -2, -2, -2, -2, -2],
       [-1, -1, -1, -1, -1, -1, -1, -1, -1],
       [ 0,  0,  0,  0,  0,  0,  0,  0,  0],
       [ 1,  1,  1,  1,  1,  1,  1,  1,  1],
       [ 2,  2,  2,  2,  2,  2,  2,  2,  2],
       [ 3,  3,  3,  3,  3,  3,  3,  3,  3]])
>>> j
array([[-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4],
       [-4, -3, -2, -1,  0,  1,  2,  3,  4]])

自然,也很容易计算出每个像素距离图像中心的距离数组(以d表示)。下面的代码使用np.hypot()函数完成距离计算,如果先求平方和再开平方,也没有问题,只是不够酷而已。


>>> d = np.hypot(i, j)
>>> d
array([[5.        , 4.24264069, 3.60555128, 3.16227766, 3.        ,
        3.16227766, 3.60555128, 4.24264069, 5.        ],
       [4.47213595, 3.60555128, 2.82842712, 2.23606798, 2.        ,
        2.23606798, 2.82842712, 3.60555128, 4.47213595],
       [4.12310563, 3.16227766, 2.23606798, 1.41421356, 1.        ,
        1.41421356, 2.23606798, 3.16227766, 4.12310563],
       [4.        , 3.        , 2.        , 1.        , 0.        ,
        1.        , 2.        , 3.        , 4.        ],
       [4.12310563, 3.16227766, 2.23606798, 1.41421356, 1.        ,
        1.41421356, 2.23606798, 3.16227766, 4.12310563],
       [4.47213595, 3.60555128, 2.82842712, 2.23606798, 2.        ,
        2.23606798, 2.82842712, 3.60555128, 4.47213595],
       [5.        , 4.24264069, 3.60555128, 3.16227766, 3.        ,
        3.16227766, 3.60555128, 4.24264069, 5.        ]])

设想一下,如果想将不同的距离使用jet颜色映射表映射为不同的颜色,图像是什么样子呢?如果再选取图像中的某个特定区域,比如列号的平方小于10倍行号的全部像素,将选中区域各个点的距离使用Paired颜色映射表映射为不同的颜色,图像又会变成什么样子呢?下面用10行代码实现了这一切。


>>> def draw_picture(w, h, cm1='jet', cm2='Paired'):
	cm1, cm2 = mplcm.get_cmap(cm1), mplcm.get_cmap(cm2)
	colormap1, colormap2 = np.array([cm1(k) for k in range(cm1.N)]), np.array([cm2(k) for k in range(cm2.N)])
	i, j = np.repeat(np.arange(h),w).reshape(h,w)-h//2, np.tile(np.arange(w), (h,1))-w//2
	d = np.hypot(i, j)
	e = d[(j*j/10)<i]
	d = np.int32((cm1.N-1)*(d-d.min())/(d.max()-d.min()))
	d = np.uint8(255*colormap1[d])
	e = np.int32((cm2.N-1)*(e-e.min())/(e.max()-e.min()))
	d[(j*j/10)<i] = np.uint8(255*colormap2[e])
	Image.fromarray(d).show()

	
>>> draw_picture(1200, 900, cm1='jet', cm2='Paired')

运行上面的这段代码,你就会看到本文开头所展示的那幅图画。这就是使用NumPy绘画的核心技巧,融会贯通之后,相信你也能够绘制出更漂亮、更绚丽的作品来。 

以上就是使用Python NumPy库绘制渐变图案的详细内容,更多关于Python NumPy绘制渐变图案的资料请关注编程网其它相关文章!

--结束END--

本文标题: 使用PythonNumPy库绘制渐变图案

本文链接: https://lsjlt.com/news/160467.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 使用PythonNumPy库绘制渐变图案
    目录1. 导入模块2. 基本绘画流程3. 生成随机彩色图像4. 生成渐变色图像5. 在渐变色背景上画曲线6. 使用颜色映射(ColorMap)7. 展示NumPy的魅力NumPy也可...
    99+
    2024-04-02
  • 如何使用Python NumPy库绘制渐变图案
    今天就跟大家聊聊有关如何使用Python NumPy库绘制渐变图案,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画...
    99+
    2023-06-22
  • 基于Python+Matplotlib绘制渐变色扇形图与等高线图
    目录渐变色扇形图等高线渐变色扇形图 使用 python - matplotlib 颜色地图plt.cm模块儿,来绘制出颜色渐变、更加好看的扇形图。也称彩虹图,但是也不限于彩虹图,可以...
    99+
    2024-04-02
  • CSS绘制:如何实现简单的渐变图形效果
    CSS绘制:实现简单的渐变图形效果在网页设计中,渐变图形效果是一种常见的视觉元素,可以为网站增添吸引人的外观和体验。在CSS中,我们可以利用渐变效果轻松地实现各种图形的渐变效果,包括矩形、圆形、文字等。本文将介绍如何使用CSS来实现简单的渐...
    99+
    2023-11-21
    图形 绘制 CSS渐变
  • react使用echart绘制地图的案例
    目录一:导入静态文件二:初始化配置三:options各个配置项一:导入静态文件 import { useEffect, useRef } from 'react' import * ...
    99+
    2023-01-11
    react使用echart绘制地图 react echart画地图
  • 使用css写带纹理渐变背景图的案例
    本文将为大家详细介绍“使用css写带纹理渐变背景图的案例”,内容步骤清晰详细,细节处理妥当,而小编每天都会更新不同的知识点,希望这篇“使用css写带纹理渐变背景图的案例”能够给你意想不到的收获,请大家跟着小编的思路慢慢深入,具体内容如下,一...
    99+
    2023-06-08
  • Android使用自定义View绘制渐隐渐现动画
    实现了一个有趣的小东西:使用自定义View绘图,一边画线,画出的线条渐渐变淡,直到消失。效果如下图所示: 用属性动画或者渐变填充(Shader)可以做到一笔一笔的变化,但要想一...
    99+
    2022-06-06
    view 自定义view 动画 Android
  • 使用Python绘制热图的库 pyHea
    pyHeatMap 详细介绍 这是一个生成热图的小程序,基于 Python 和 PIL 开发。 程序截图: 点击图 热图 安装: 通过 pip 安装: pip install pyheatmap 通过 easy_install 安...
    99+
    2023-01-31
    热图 Python pyHea
  • Python使用turtle模块绘制爱心图案
    程序员的浪漫,你懂吗? 今天使用python小海龟实现爱心图案的绘制,代码如下: import turtle import time # 清屏函数 def clear_a...
    99+
    2024-04-02
  • 怎么用JavaScript绘制一个渐变圆圈对角线
    这篇文章主要讲解了“怎么用JavaScript绘制一个渐变圆圈对角线”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用JavaScript绘制一个渐变圆圈...
    99+
    2024-04-02
  • 如何使用html5绘制圆形多角图案
    本篇文章为大家展示了如何使用html5绘制圆形多角图案,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。先看看最简单的效果图:代码如下:JavaScript Code复...
    99+
    2024-04-02
  • Python中如何使用Matplotlib库绘制图形
    目录前言一、简单的正弦函数与余弦函数二、进阶版正弦函数与余弦函数1.改变颜色与粗细2.设置图片边界3.设置记号4.设置记号的标签5.设置X,Y轴6.完整代码三、绘制简单的折线图总结前...
    99+
    2024-04-02
  • Python中怎么使用Matplotlib库绘制图形
    这篇文章主要介绍“Python中怎么使用Matplotlib库绘制图形”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中怎么使用Matplotlib库绘制图形”文章能帮助大家解决问题。一、...
    99+
    2023-07-02
  • 如何使用HTML5 SVG绘制各种雪花图案
    这篇文章主要为大家展示了“如何使用HTML5 SVG绘制各种雪花图案”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用HTML5 SVG绘制各种雪花图案”这...
    99+
    2024-04-02
  • 绘制flowable 流程图的Vue 库使用详解
    目录引言workflow-bpmn-modeler注册 bpmnModeler 组件muheflow-bpmn-modeler引言 之前松哥发了一篇文章和小伙伴们介绍了前端的 bpm...
    99+
    2024-04-02
  • 如何使用CSS制作交替渐变效果的背景图片
    背景图片是网页设计中不可或缺的一部分,能够增添页面的美感和吸引力。而使用CSS来实现背景图片的效果也是一种常见的做法。本文将介绍如何使用CSS来制作交替渐变效果的背景图片,并提供具体的代码示例。一、准备工作在开始之前,我们需要准备一些基本的...
    99+
    2023-10-21
    CSS渐变背景 交替效果 背景图片编程关键词
  • 使用python绘制折线图
    前言 最近在完成一篇气象预报的论文,涉及到深度学习与气象绘图。我觉得还是有必要写一下我在这个过程中的一些经验总结,借此机会与各位同道交流。 一、基础命令 在我们使用深度学习时,肯定会用到绘图命令,绘制loss与val_loss等等,以此查看...
    99+
    2023-09-22
    python 开发语言
  • 使用Python绘制雷达图
    假设某天某地每三个小时取样的气温为 0时 3时 6时 9时 12时 15时 18时 21时 24时 3℃ 5℃ 6℃ 3℃ 1℃ 3℃ 3℃ 2℃ 3℃ 针对温度变...
    99+
    2023-01-31
    Python
  • 使用matplotlib绘制并排柱状图的实战案例
    目录一、概念说明二、数据展示三、图像绘制总结一、概念说明 柱状图(bar chart),从相同的横坐标出发,以不同的数值大小来设定柱子的高度,进而表示无序或有序的定性数据间某个定量指...
    99+
    2024-04-02
  • Python使用Matplotlib库绘制双y轴图形(柱状图+折线图)
    今天是第一次写踩坑日记系列,这个系列用来记录在Python和R学习过程中遇到的问题和结果。今天介绍的是使用Python的matplotlib库绘制两个y轴图的一些基本用法与踩坑行为。希望可以...
    99+
    2023-08-31
    python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作