返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C语言 八大排序算法的过程图解及实现代码
  • 595
分享到

C语言 八大排序算法的过程图解及实现代码

2024-04-02 19:04:59 595人浏览 独家记忆
摘要

目录前言一、插入排序时间复杂度空间复杂度代码实现(升序)二、希尔排序时间复杂度空间复杂度代码实现三、选择排序时间复杂度空间复杂度代码实现四、堆排序时间复杂度空间复杂度代码实现五、冒泡

前言

排序是数据结构中很重要的一章,先介绍几个基本概念。

  • 排序稳定性:多个具有相同的关键字的记录,若经过排序,这些记录的相对次
  • 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

一、插入排序

时间复杂度

最坏:-----------O(N^2)

最好:-----------O(N)

平均:-----------O(N^2)

空间复杂度

O(1)

稳定性:稳定

-『 插入排序 』:顾名思义就是把每一个数插入到有序数组中对应的位置。

就相当于你玩扑克牌的过程,抓来一张牌,就放在对应有序位置

直接插入排序:

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移

代码实现(升序)


void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int x = a[end+1];//x为待排序的值
		int end = i;//从end开始往前和x依次比较

		while (end >= 0)
		{
			if (a[end] > x)//只要当前的值大于x继续往前找
			{
				a[end+1] = a[end];
				end--;
			}
			else
			{
				break;//跳出循环说明a[end] <= x
			}
		}
		a[end + 1] = x;//跳出循环说明a[end] <= x,需要把x插入到end前边
	}
}

那么我们可以看到,越是接近有序的数组,插入排序的效率越高(有序时对于任何一个数只需要和前边的数比较一次)。

二、希尔排序

时间复杂度

O(n^(1.3—2))

空间复杂度

O(1)

稳定性:稳定

『 希尔排序 』(shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。

该方法实质上是一种『 分组插入 』方法,因为插入排序对于接近有序的数组排序效率非常高,那么希尔提出:

算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

一般的初次取序列的一半为增量,以后每次减半,直到增量为1。

并且插入排序可以看成分组是1的希尔排序。动图如下:

因为插入排序可以看做gap==1的希尔排序,因此只需要改变插入排序中for循环的增量控制排序即可。

代码实现


void ShellSort(int* a, int n)
{
	//按gap分组进行预排序
	int gap = n;
	while (gap>1)
	{
		//gap = gap / 2;
		gap = gap / 3 + 1;//这里分组选每次折半或者/3都可以

		for (int j = 0; j < gap; j++)//gap个组
			for (int i = j; i < n - gap; i+=gap)//每个组从j开始每个增量gap	
			{
				int end = i;
				int x = a[end + gap];
				while (end >= 0)
				{
					if (a[end] > x)
					{
						a[end + gap] = a[end];
						end -= gap;
					}
					else
					{
						break;
					}
				}
				a[end + gap] = x;
			}
	}
}

关于希尔排序时间复杂度证明比较复杂,取决于gap怎么取,如果按照Knuth提出的/3,来取是O(n^(1.25)- 1.6*O(n^1.25).

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定

三、选择排序

时间复杂度

最坏:-----------O(N^2)

最好:-----------O(N^2)

平均:-----------O(N^2)

空间复杂度

O(1)

稳定性:不稳定

『 基本思想 』:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始(末尾)位置,直到全部待排序的数据元素排完 。如图:

代码实现


void SelectSort(int* a, int n)
{
	int begin = 0;
	int end = n - 1;
	int mini = begin;//记录最小值下标
	while (begin<end)
	{
		for (int i = begin; i < end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;//更新最小值下标
			}
		}
		Swap(&a[mini],&a[begin]);//把最小值放到左边
		++begin;//左边对应起始位置++
	}
}

直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用。

四、堆排序

时间复杂度

最坏:-----------O(N * logN)

最坏:-----------O(N * logN)

平均:-----------O(N*logN)

空间复杂度

O(1)

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

具体可见另一篇文章堆排序和TopK问题

动图:

代码实现


void Swap(int* px,int* py)
{
	int t = (*px);
	(*px) = (*py);
	 (*py)= t ;
}
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}

}
void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	for (int i = n - 1; i > 0; i--)
	{
		Swap(&a[0], &a[i]);
		AdjustDown(a, i, 0);
	}
}

五、冒泡排序

时间复杂度

最坏:-----------O(N^2)

最好:-----------O(N)

平均:-----------O(N^2)

空间复杂度

O(1)

『 冒泡排序 』是大家最熟悉的也是最容易理解的排序,如下图:

『 冒泡排序基本思想 』就是每一次将相邻的数据进行『 两两比较 』,选出最大的依次比较送到右边,那么最右边就是最大值,而左边留下的自然就是小的(排升序)

-『 冒泡排序 』需要两层循环

『 内层循环 』表示一次冒泡,也就是两两比较先选出最大的放到最右边,同时注意每一次冒泡选出最大元素,那么两两比较次数-1(下一次不用比较选好的最右边)

『 外层循环 』控制的是冒泡的次数(假设数组N 个元素)也就是N-1次冒泡选出N-1个最大的元素

代码实现

初版代码如下:


//初版:
void Swap(int* px, int* py)
{
	int t = (*px);
	*px = (*py);
	(*py) = t;
}
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n-1; i++)//外层循环
	{
		for (int j = 0; j < n-1-i; j++)
		{
			if(a[j]>a[j+1])
				Swap(&a[j],& a[j + 1]);//交换
			flag = 1;
		}	
	}
}

时间复杂度分析:每一次比较次数是N-1,N-2,N-3***1.因此是N(N-1)/2

但是这种写法还是有缺陷,时间复杂度永远是O(N^2) , 对于一个已经排好序的数组来说,还是需要N^2的复杂度,但对于有序的数组,每一次冒泡都不会进行交换因为有序,因此如果只要任何一次冒泡中没有数据交换就证明数组有序了。时间复杂度最好也可以达到0(N)。

代码优化如下:


//优化:
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n-1; i++)
	{
		int flag = 0;
		for (int j = 0; j < n-1-i; j++)
		{
			if(a[j]>a[j+1])
			Swap(&a[j],& a[j + 1]);
			flag = 1;
		}
		if (flag == 0)
			break;

	}
}

六、快排排序

时间复杂度

最坏:-----------O(N^2)

最好:-----------O(logN)

平均:-----------O(logN)

空间复杂度

O(logN)

『 快速排序 』是Hoare于1962年提出的一种二叉树结构的交换排序方法,其『 基本思想 』为:任取待排序元素序列中的某元素作为『 基准值 』,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。如图:

代码实现

递归写法:


// 假设按照升序对a数组中[left, right)区间中的元素进行排序
void QuickSort(int* a, int left, int right) {
	 if(right >= left )
	 	return;//递归截止条件
	 
	 // 按照基准值对a数组的 [left, right]区间中的元素进行划分
	 int keyi= partion(a, left, right);
	 
	 // 划分成功后以keyi为边界形成了左右两部分 [left, keyi-1] 和 [keyi+1, right]
	 // 递归排[left, keyi-1]
	 QuickSort(a, left, keyi-1);
	 
	 // 递归排[keyi+1, right]
	 QuickSort(a, keyi+1, right);
}

递归框架写完了接下来就差partion函数的实现也就是快排的灵魂,去每一次找基准值。那么一共有三种写法如下:

hoare版本

1.首先就是要找基准值,这里你可以选最左边或最右边的值(图中是6)

2.两个指针指向头(这里选左为基准值,头指针指向第二个)和尾,基准值选左,则右指针先走,反之左指针先走。

3.左指针找到比基准值大的停下,右指针找比基准值小的停下,交换左右指针指向值

4.重复2.3动作,直到左右指针相遇,交换左指针值和基准值

左值为基准,右指针先走找比6小的:

左值为基准,右指针先走找比6小的:

交换:

最终效果:相遇交换左指针和基准值,保证了6的左边都比6小,右边比6大。

并且除此之外,由于我们看到这种算法类似于二叉树的思想排好中间再排左右子树,因此我要保证选取的随机值尽量位与中位数。所以我们采取三数取中的方法。(选取最左值最右最中间的数的中位数)效率是可以提升5%到10%的。


//三数取中
int GetMidIndex(int* a, int left, int right)
{
	//int mid = (left + right) / 2;
	//int mid = left + (right - left) / 2;
	int mid = left + ((right - left)>>1);
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;

		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else 
		{
			return right;
		}
	}
	else//a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;

		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}

}
int Partion(int* a, int left,int right)
{
	int mini = GetMidIndex(a, left, right);
	Swap(&a[mini], &a[left]);
	
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		Swap(&a[left], &a[right]);
	}Swap(&a[left], &a[keyi]);
	return left;
}

挖坑法

挖坑法就是对hoare版本的一种变形,过程如下:

初始如下:先保存基准值,基准值形成一个坑位!

左为基准,右指针先走,找到小的送到坑位,那么此刻右指针形成了新的坑位

左指针出动,找到大的继续送到坑位,左指针形成了新的坑位

指针相遇,把6写入。也保证左边比6小,右边比6大。代码如下:


//挖坑法
int Partion2(int* a, int left, int right)
{
	int mini = GetMidIndex(a, left, right);
	Swap(&a[mini], &a[left]);

	int key = a[left];
	int pivot = left;
	while (left < right)
	{
		//右边先找小
		while (left< right && a[right] >= key)
		{
			--right;
		}
		a[pivot] = a[right];
		pivot = right;
		while (left < right && a[left] <= key)
		{
			++left;
		}
		a[pivot] = a[left];
		pivot = left;
	}
	a[pivot] = key;
	return pivot;
}

前后指针版本

顾名思义,使用两个指针,这里选取左为基准值为例,两个指针从左开始出发一个cur,一个prev。

要求:

cur指针先走,一旦找到比基准值小的就停下,++prev,并交换。

cur指针一直到头为止,最后交换prev指向值和基准值

1和2都比6小cur走一步停一步,prev++并交换,指向相等。

cur越过7和9去找小的3,此时停下,prev++指向7交换。(我们注意到prev和cur不等时prev永远是去找大的,cur是找小的,因此交换就做到把cur指向的小的往前扔,大的往后仍,)

整个过程如上,代码:


//前后指针法
int Partion3(int* a, int left, int right)
{
	int mini = GetMidIndex(a, left, right);
	Swap(&a[mini], &a[left]);
	int prev = left, cur = left+1;
	int keyi = left;
	while (cur<=right)
	{
		if (a[cur] < a[keyi] && ++prev !=cur)
		{
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	return prev;
}

小结

递归版本三种方法如上,但是递归毕竟有缺陷,就是需要不断开辟栈帧,当数据量超过10W以上时就会有栈溢出的风险。

并且递归类似二叉树的结构越往下递归调用越多,栈帧翻倍开辟,因此我们还可以去优化一下,就是当递归到左右区间比较小时,我们去控制剩下的排序用别的排序来代替它。


//优化:
void QuickSort(int* a, int left, int right)
{
	if (left >= right)
		return;
	if (right - left + 1 < 10)
	{
		//小区间优化
		InsertSort(a + left , right - left + 1);
	}
	else
	{
		int keyi = Partion3(a, left, right);
		QuickSort(a, left, keyi - 1);
		QuickSort(a, keyi + 1, right);
	}
	
}

非递归:

非递归版本就是改变了快排的框架,用一个栈和循环来代替递归实现。依次将左右下标入栈出栈(出栈之前排序)来模拟递归。


void QuickSortNonR(int* a, int left, int right)
{
	Stack st;//定义一个栈
	StackInit(&st);//初始化
	StackPush(&st, left);//左下标入栈
	StackPush(&st, right);//右下标入栈
	while (StackEmpty(&st)!=0)
	{
		int end = StackTop(&st);//获取栈顶元素即后入栈的右下标
		StackPop(&st);//出栈

		int begin = StackTop(&st);//获取栈顶元素即先入栈的左下标
		StackPop(&st);//出栈

		int keyi = Partion3(a, begin, end);
		if (keyi + 1 < end)//相当于递归左半部分
		{
			StackPush(&st, keyi + 1);
			StackPush(&st, right);
		}
		if (keyi - 1 > begin)//相当于递归右半部分
		{
			StackPush(&st, keyi - 1);
			StackPush(&st, begin);
		}

	}
}

七、归并排序

时间复杂度

最坏:-----------O(NlogN)

最好:-----------O(NlogN)

平均:-----------O(NlogN)

空间复杂度

O(N)

稳定性:稳定

基本思想:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 动图演示:

归并的思想就是把先假设数组分成两个有序,对其进行筛选排序,如上图:

但是问题来了我们怎么保证数组是有序的?因此就要求我们从小区间开始对数组归并排序,对于上图中的数据,先对开始3和3归并,小的先进入到tmp数组,因此前两个就是有序,再对,5和6归并,5,6有序后,在归并3,3,5,6……以此类推

代码实现

递归写法

框架:


void MergeSort(int* a,int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);//开辟N个大小数组
	if (tmp == NULL)
	{
		exit(-1);
	}
	_MergeSort(a, 0, n - 1, tmp);//进行归并操作
	free(tmp);
	tmp = NULL;
}

归并排序:

运用递归先不断缩小偏序区间,在递归层层退出时一遍退出,一边对不断回大的区间归并排序:


void _MergeSort(int* a, int left, int right,int* tmp)
{
	if (left >= right)
	{
		return;//递归截止条件left >= right区间中数的个数<=0个
	}
	int mid = left + (right - left) / 2;//取中

	_MergeSort(a, left, mid, tmp);//对左区间递归
	_MergeSort(a, mid+1, right, tmp);//对右区间递归

	int begin1 = left, end1 = mid;//左区间
	int begin2 = mid+1, end2 = right;//右区间
	int i = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1 )
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	for (size_t i = left; i <= right; i++)
	{
		a[i] = tmp[i];//把排好序[left,right]的tmp赋值给原数组
	}
}

非递归

非递归的不同就是需要手动控制区间大小,也就是不断2倍扩大区间归并。

但是还需要注意就是当下标是奇数,无法分成整数个组的时候,需要考虑剩余的数,以及是否越界的问题


void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		exit(-1);
	}
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i += 2 * gap)
		{
			//[i][i+gap-1] [i+gap][i+2*gap-1]
			int begin1 = i, end1 = i + gap-1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			int index = i;


			if (end1 >= n || begin2 >= n)
			{
				break;
			}
			if (end2 >= n)
			{
				end2 = n - 1;
			}



			while (begin1<=end1 && begin2<=end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tmp[index++] = a[begin1++];
				}
				else
				{
					tmp[index++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[index++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[index++] = a[begin2++];
			}
			//控制越界问题三种情况
			if (end1 >= n)
			{
				end1 = n - 1;
			}
			if (end1 >= n)
			{
				end1 = n - 1;
			}
			if (end1 >= n)
			{
				end1 = n - 1;
			}

			for (int j = i; j <= end2; j++)
			{
				a[j] = tmp[j];
			}
		}

		
		gap *= 2;
	}
	
	free(tmp);
	tmp = NULL;

}

八、计数排序

时间复杂度

最坏:-----------O(MAX(N,范围))

最好:-----------O(MAX(N,范围))

平均:-----------O(MAX(N,范围))

空间复杂度

O(范围)

稳定性:不稳定

思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:

  1. 统计相同元素出现次数
  2. 根据统计的结果将序列回收到原来的序列中

动图如下:

类似桶排序的思想,如上图,先开辟数组统计数组中某一个数出现的次数,比如2出现1次,3出现两次,那么我们直接按顺序读入开辟的数组,在原数组写1一个2,两个3以此类推……

代码实现


void CountSort(int* a, int n)
{
	int max=a[0], min= a[0];
	for (int i = 0; i < n; i++)
	{
		if (a[i] > max)
		{
			max = a[i];
		}
		if (a[i] < min)
		{
			min = a[i];
		}
	}
	int range = max - min + 1;
	int* count = (int*)malloc(sizeof(int) * range);
	memset(count, 0, sizeof(int)*range);
	for (int i = 0; i < n; i++)
	{
		count[a[i] - min]++;
	}
	int j = 0;
	for (int i = 0; i < range; i++)
	{
		while (count[i]--)
		{
			a[j++] = i + min;
		}
	}
}

计数排序的特性总结:

计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。

九、各种排序总结比较

1. 复杂度总结

2. 性质分类

 以上就是C语言 八大排序算法的过程图解及实现代码的详细内容,更多关于C语言八大排序算法的资料请关注编程网其它相关文章!

--结束END--

本文标题: C语言 八大排序算法的过程图解及实现代码

本文链接: https://lsjlt.com/news/159047.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C语言 八大排序算法的过程图解及实现代码
    目录前言一、插入排序时间复杂度空间复杂度代码实现(升序)二、希尔排序时间复杂度空间复杂度代码实现三、选择排序时间复杂度空间复杂度代码实现四、堆排序时间复杂度空间复杂度代码实现五、冒泡...
    99+
    2024-04-02
  • C/C++语言八大排序算法之桶排序全过程示例详解
    基本思路是将所有数的个位十位百位一直到最大数的最高位一步步装桶,先个位装桶然后出桶,直到最高位入桶出桶完毕。 首先我们要求出一个数组的最大数然后求出他的最大位数  //...
    99+
    2024-04-02
  • Java常用的八种排序算法及代码实现+图解
    目录1.冒泡排序冒泡排序法的思路2.冒泡排序法的代码实现3.冒泡排序法优化4.选择排序5.插入排序插入排序的思路经典的排序算法有八种,分别为: 冒泡排序选择排序插入排序归并排序希尔排...
    99+
    2024-04-02
  • 八大排序算法的Python实现
    Python实现八大排序算法,具体内容如下 1、插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(...
    99+
    2022-06-04
    算法 Python
  • C语言实现经典排序算法的示例代码
    目录一、冒泡排序1.原理2.实现3.算法分析二、选择排序1.原理2.实现3.算法分析三、插入排序1.原理2.实现3.算法分析四、希尔排序1.原理2.实现3.算法分析总结一、冒泡排序 ...
    99+
    2022-11-13
    C语言排序算法 C语言排序
  • C语言冒泡排序算法代码详解
    今天我们来用C语言实现一下冒泡排序 首先我们来了解一下什么叫做冒泡排序,冒泡顾名思义把质量轻的气体(如二氧化碳一样)浮到水面上(如可乐中的二氧化碳),因此冒泡排序的原理就是N个元素在...
    99+
    2024-04-02
  • C语言实现冒泡排序算法代码怎么写
    这篇文章主要介绍“C语言实现冒泡排序算法代码怎么写”,在日常操作中,相信很多人在C语言实现冒泡排序算法代码怎么写问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C语言实现冒泡排序算法代码怎么写”的疑惑有所帮助!...
    99+
    2023-06-29
  • C语言实现交换排序算法(冒泡,快速排序)的示例代码
    目录前言一、冒泡排序1.基本思想2.优化3.扩展二、快速排序1.基本思想2.优化3.代码前言 查找和排序是数据结构与算法中不可或缺的一环,是前辈们在算法道路上留下的重要且方便的一些技...
    99+
    2024-04-02
  • Java常用的八种排序算法与代码实现
    目录1.直接插入排序2.希尔排序3.简单选择排序4.堆排序5.冒泡排序6.快速排序7.归并排序8.基数排序1.直接插入排序 经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列...
    99+
    2024-04-02
  • C++实现十大排序算法及排序算法常见问题
    目录前言0 概述1 冒泡排序2 选择排序3 插入排序4 希尔排序5 归并排序6 堆排序7 快速排序8 计数排序9 桶排序10 基数排序总结前言 本文为C++实现的十大排序算法及基于排...
    99+
    2024-04-02
  • Python代码实现桶排序算法的流程图
    桶排序算法简单的理解就是将数据分散到桶中,然后对每个桶中的数据进行排序,最后按顺序排列数据。 4、将输入数组中的其他数,重复步骤3,如图: Python代码实现桶排序def bucketSort(array): b...
    99+
    2024-01-24
  • c语言如何实现排序算法
    小编给大家分享一下c语言如何实现排序算法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.选择排序-简单选择排序选择排序是最简单的一种基于O(n2)时间复杂度的排...
    99+
    2023-06-15
  • C语言实现冒泡排序的思路以及过程
    目录C语言实现<冒泡排序>整体思路代码实现C语言实现<冒泡排序> 你们好!我是飞人!此篇文章是我进入IT行业第一篇博客,若有不妥之处,欢迎指点。 此篇讲解冒泡...
    99+
    2024-04-02
  • Go语言实现常用排序算法的示例代码
    目录冒泡排序快速排序选择排序插入排序排序算法是在生活中随处可见,也是算法基础,因为其实现代码较短,应用较常见。所以在面试中经常会问到排序算法及其相关的问题,可以说是每个程序员都必须得...
    99+
    2024-04-02
  • C语言所有经典排序方法的实现代码
    运行结果正确 还是快速排序难一些。 完整代码 #include<stdio.h> #include <stdlib.h> #include <st...
    99+
    2024-04-02
  • C语言实现快速排序算法实例
    首先我们要对一组数据进行排序: 在数组中选一个基准数(通常为数组第一个,黄圈圈标记了); 将数组中小于基准数的数据移到基准数左边,大于基准数的移到右边,怎么移动,后面说; 对于基准数...
    99+
    2024-04-02
  • C语言实现冒泡排序算法的示例详解
    目录1. 问题描述2. 问题分析3. 算法设计动图演示4. 程序设计设计一设计二结论5. 流程框架6. 代码实现7. 问题拓展1. 问题描述 对N个整数(数据由键盘输入)进行升序排列...
    99+
    2024-04-02
  • c语言实现的几种常用排序算法
    概述 最近重新回顾了一下数据结构和算法的一些基本知识,对几种排序算法有了更多的理解,也趁此机会通过博客做一个总结。 1.选择排序-简单选择排序 选择排序是最简单的一种基于O(n2)时...
    99+
    2024-04-02
  • C语言如何实现快速排序算法
    这篇文章将为大家详细讲解有关C语言如何实现快速排序算法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。代码#define  _CRT_SECURE_NO_WARNINGS 1/...
    99+
    2023-06-22
  • C语言如何实现交换排序算法
    这篇文章主要介绍了C语言如何实现交换排序算法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言如何实现交换排序算法文章都会有所收获,下面我们一起来看看吧。一、冒泡排序1.基本思想对于很多同学来说冒泡排序是再熟...
    99+
    2023-07-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作