返回顶部
首页 > 资讯 > 后端开发 > Python >关于Python数据结构中字典的心得
  • 724
分享到

关于Python数据结构中字典的心得

数据结构字典心得 2022-06-04 19:06:59 724人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

本篇主要介绍:常见的字典方法、如何处理查不到的键、标准库中 dict 类型的变种、散列表的工作原理等。一下是全部内容: 泛映射类型 collections.abc 模块中有 Mapping 和 Mutabl

本篇主要介绍:常见的字典方法、如何处理查不到的键、标准库中 dict 类型的变种、散列表的工作原理等。一下是全部内容:

泛映射类型

collections.abc 模块中有 Mapping 和 MutableMapping 这两个抽象基类,它们的作用是为 dict 和其他类似的类型定义形式接口。

查看图片

标准库里所有映射类型都是利用 dict 来实现的,它们有个共同的限制,即只有可散列的数据类型才能用做这些映射里的键。

问题: 什么是可散列的数据类型?

python 词汇表(https://docs.Python.org/3/glossary.html#term-hashable)中,关于可散列类型的定义是这样的:

如果一个对象是可散列的,那么在这个对象的生命周期中,它的散列值是不变的,而且这个对象需要实现 __hash__() 方法。另外可散列对象还要有 __eq__() 方法,这样才能跟其他键做比较。如果两个可散列对象是相等的,那么它们的散列只一定是一样的

根据这个定义,原子不可变类型(str,bytes和数值类型)都是可散列类型,frozenset 也是可散列的(因为根据其定义,frozenset 里只能容纳可散列类型),如果元组内都是可散列类型的话,元组也是可散列的(元组虽然是不可变类型,但如果它里面的元素是可变类型,这种元组也不能被认为是不可变的)。

一般来讲,用户自定义的类型的对象都是可散列的,散列值就是它们的 id() 函数的返回值,所以这些对象在比较的时候都是不相等的。(如果一个对象实现了 eq 方法,并且在方法中用到了这个对象的内部状态的话,那么只有当所有这些内部状态都是不可变的情况下,这个对象才是可散列的。)

根据这些定义,字典提供了很多种构造方法,Https://docs.python.org/3/library/stdtypes.html#mapping-types-dict 这个页面有个例子来说明创建字典的不同方式。


>>> a = dict(one=1, two=2, three=3)
>>> b = {'one': 1, 'two': 2, 'three': 3}
>>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})
>>> a == b == c == d == e
True

除了这些方法以外,还可以用字典推导的方式来建造新 dict。

字典推导

自 Python2.7 以来,列表推导和生成器表达式的概念就移植到了字典上,从而有了字典推导。字典推导(dictcomp)可以从任何以键值对作为元素的可迭代对象中构建出字典。

比如:


>>> data = [(1, 'a'), (2, 'b'), (3, 'c')]
>>> data_dict = {num: letter for num, letter in data}
>>> data_dict
{1: 'a', 2: 'b', 3: 'c'}

常见的映射方法

下表为我们展示了 dict、defaultdict 和 OrderedDict 的常见方法(后两种是 dict 的变种,位于 collections模块内)。

查看图片

default_factory 并不是一个方法,而是一个可调用对象,它的值 defaultdict 初始化的时候由用户设定。 OrderedDict.popitem() 会移除字典最先插入的元素(先进先出);可选参数 last 如果值为真,则会移除最后插入的元素(后进先出)。用 setdefault 处理找不到的键

当字典 d[k] 不能找到正确的键的时候,Python 会抛出异常,平时我们都使用d.get(k, default) 来代替 d[k],给找不到的键一个默认值,还可以使用效率更高的 setdefault


my_dict.setdefault(key, []).append(new_value)
# 等同于
if key not in my_dict:
 my_dict[key] = []
my_dict[key].append(new_value)

这两段代码的效果一样,只不过,后者至少要进行两次键查询,如果不存在,就是三次,而用 setdefault 只需一次就可以完成整个操作。

那么,我们取值的时候,该如何处理找不到的键呢?

映射的弹性查询

有时候,就算某个键在映射里不存在,我们也希望在通过这个键读取值的时候能得到一个默认值。有两个途径能帮我们达到这个目的,一个是通过 defaultdict 这个类型而不是普通的 dict,另一个是给自己定义一个 dict 的子类,然后在子类中实现 __missing__ 方法。

defaultdict:处理找不到的键的一个选择

首先我们看下如何使用 defaultdict :


import collections

index = collections.defaultdict(list)
index[new_key].append(new_value)

这里我们新建了一个字典 index,如果键 new_key 在 index 中不存在,表达式 index[new_key] 会按以下步骤来操作:

调用 list() 来建立一个新的列表把这个新列表作为值,'new_key' 作为它的键,放入 index 中返回这个列表的引用。

而这个用来生成默认值的可调用对象存放在名为 default_factory 的实例属性中。

defaultdict 中的 default_factory 只会在 getitem 里调用,在其他方法中不会发生作用。比如 index[k] 这个表达式会调用 default_factory 创造的某个默认值,而 index.get(k) 则会返回 None。(这是因为特殊方法 missing 会在 defaultdict 遇到找不到的键的时候调用 default_factory,实际上,这个特性所有映射方法都可以支持)。

特殊方法 missing

所有映射在处理找不到的键的时候,都会牵扯到 missing 方法。但基类 dict 并没有提供 这个方法。不过,如果有一个类继承了 dict ,然后这个继承类提供了 missing 方法,那么在 getitem 碰到找不到键的时候,Python 会自动调用它,而不是抛出一个 KeyError 异常。

__missing__ 方法只会被 __getitem__ 调用。提供 missing 方法对 get 或者 __contains__(in 运算符会用到这个方法)这些方法的是有没有影响。

下面这段代码实现了 StrKeyDict0 类,StrKeyDict0 类在查询的时候把非字符串的键转化为字符串。


class StrKeyDict0(dict): # 继承 dict
 def __missing__(self, key):
 if isinstance(key, str):
  # 如果找不到的键本身就是字符串,抛出 KeyError 
  raise KeyError(key)
 # 如果找不到的键不是字符串,转化为字符串再找一次
 return self[str(key)]
 def get(self, key, default=None):
 # get 方法把查找工作用 self[key] 的形式委托给 __getitem__,这样在宣布查找失败钱,还能通过 __missing__ 再给键一个机会
 try:
  return self[key]
 except KeyError:
  # 如果抛出 KeyError 说明 __missing__ 也失败了,于是返回 default 
  return default
 def __contains__(self, key):
 # 先按传入的键查找,如果没有再把键转为字符串再找一次
 return key in self.keys() or str(key) in self.keys()

contains 方法存在是为了保持一致性,因为 k in d 这个操作会调用它,但我们从 dict 继承到的 contains 方法不会在找不到键的时候用 missing 方法。

my_dict.keys() 在 python3 中返回值是一个 "视图","视图"就像是一个集合,而且和字典一样速度很快。但在 Python2中,my_dict.keys() 返回的是一个列表。 所以 k in my_dict.keys() 操作在 python3中速度很快,但在 python2 中,处理效率并不高。

如果要自定义一个映射类型,合适的策略是继承 collections.UserDict 类。这个类就是把标准 dict 用 python 又实现了一遍,UserDict 是让用户继承写子类的,改进后的代码如下:


import collections

class StrKeyDict(collections.UserDict):
 
 def __missing__(self, key):
 if isinstance(key, str):
  raise KeyError(key)
 return self[str(key)]
 
 def __contains__(self, key):
 # 这里可以放心假设所有已经存储的键都是字符串。因此只要在 self.data 上查询就好了
 return str(key) in self.data
 
 def __setitem__(self, key, item):
 # 这个方法会把所有的键都转化成字符串。
 self.data[str(key)] = item

因为 UserDict 继承的是 MutableMapping,所以 StrKeyDict 里剩下的那些映射类型都是从 UserDict、MutableMapping 和 Mapping 这些超类继承而来的。

Mapping 中提供了 get 方法,和我们在 StrKeyDict0 中定义的一样,所以我们在这里不需要定义 get 方法。

字典的变种

在 collections 模块中,除了 defaultdict 之外还有其他的映射类型。

collections.OrderedDict collections.ChainMap collections.Counter 不可变的映射类型

问题:标准库中所有的映射类型都是可变的,如果我们想给用户提供一个不可变的映射类型该如何处理呢?

从 Python3.3 开始 types 模块中引入了一个封装类名叫 MappingProxyType。如果给这个类一个映射,它会返回一个只读的映射视图(如果原映射做了改动,这个视图的结果页会相应的改变)。例如


>>> from types import MappingProxy Type
>>> d = {1: 'A'}
>>> d_proxy = MappingProxyType(d)
>>> d_proxy
mappingproxy({1: 'A'})
>>> d_proxy[1]
'A'
>>> d_proxy[2] = 'x'
Traceback(most recent call last):
 File "<stdin", line 1, in <module>
TypeError: 'MappingProxy' object does not support item assignment
>>> d[2] = 'B'
>>> d_proxy[2] # d_proxy 是动态的,d 的改动会反馈到它上边
'B'

字典中的散列表

散列表其实是一个稀疏数组(总有空白元素的数组叫稀疏数组),在 dict 的散列表中,每个键值都占用一个表元,每个表元都有两个部分,一个是对键的引用,另一个是对值的引用。因为所有表元的大小一致,所以可以通过偏移量来读取某个表元。
python 会设法保证大概有1/3 的表元是空的,所以在快要达到这个阈值的时候,原有的散列表会被复制到一个更大的空间。

如果要把一个对象放入散列表,那么首先要计算这个元素的散列值。
Python内置的 hash() 方法可以用于计算所有的内置类型对象。

如果两个对象在比较的时候是相等的,那么它们的散列值也必须相等。例如 1==1.0 那么,hash(1) == hash(1.0)

散列表算法

为了获取 my_dict[search_key] 的值,Python 会首先调用 hash(search_key) 来计算 search_key 的散列值,把这个值的最低几位当做偏移量在散列表中查找元。若表元为空,抛出 KeyError 异常。若不为空,则表元会有一对 found_key:found_value。
这时需要校验 search_key == found_key,如果相等,返回 found_value。
如果不匹配(散列冲突),再在散列表中再取几位,然后处理一下,用处理后的结果当做索引再找表元。 然后重复上面的步骤。

取值流程图如下:

查看图片

添加新值和上述的流程基本一致,只不过对于前者,在发现空表元的时候会放入一个新元素,而对于后者,在找到相应表元后,原表里的值对象会被替换成新值。

另外,在插入新值是,Python 可能会按照散列表的拥挤程度来决定是否重新分配内存为它扩容,如果增加了散列表的大小,那散列值所占的位数和用作索引的位数都会随之增加字典的优势和限制

1、键必须是可散列的

可散列对象要求如下:

支持 hash 函数,并且通过__hash__() 方法所得的散列值不变支持通过 __eq__() 方法检测相等性若 a == b 为真, 则 hash(a) == hash(b) 也为真

2、字典开销巨大

因为字典使用了散列表,而散列表又必须是稀疏的,这导致它在空间上效率低下。

3、键查询很快

dict 的实现是典型的空间换时间:字典类型由着巨大的内存开销,但提供了无视数据量大小的快速访问。

4、键的次序决定于添加顺序

当往 dict 里添加新键而又发生散列冲突时,新建可能会被安排存放在另一个位置。

5、往字典里添加新键可能会改变已有键的顺序

无论何时向字典中添加新的键,Python 解释器都可能做出为字典扩容的决定。扩容导致的结果就是要新建一个更大的散列表,并把原有的键添加到新的散列表中,这个过程中可能会发生新的散列冲突,导致新散列表中次序发生变化。
因此,不要对字典同时进行迭代和修改。

--结束END--

本文标题: 关于Python数据结构中字典的心得

本文链接: https://lsjlt.com/news/15814.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 关于Python数据结构中字典的心得
    本篇主要介绍:常见的字典方法、如何处理查不到的键、标准库中 dict 类型的变种、散列表的工作原理等。一下是全部内容: 泛映射类型 collections.abc 模块中有 Mapping 和 Mutabl...
    99+
    2022-06-04
    数据结构 字典 心得
  • python字典和结构化数据
    5.1 字典数据类型...
    99+
    2023-06-02
  • python常用数据结构字典梳理
    目录dict字典字典定义与使用字典使用:创建字典使用:访问元素字典使用:操作元素字典使用:嵌套字典字典常用方法values()items()values()get()update()...
    99+
    2024-04-02
  • JavaScript 数据结构之字典方法
    目录一、什么是字典二、创建字典类1.hasKey 方法2.set 方法3.remove 方法4.get 方法5.keys, values, keyValues 方法6.forEach...
    99+
    2024-04-02
  • 关于Python的高级数据结构与算法
    目录一、简介二、栈(Stack)三、队列(Queue)四、堆(Heap)五、排序算法(Sorting Algorithms)1. 冒泡排序(Bubble Sort)2. 选择排序(S...
    99+
    2023-05-14
    Python高级数据结构 Python算法
  • 关于Mysql索引的数据结构
    索引的数据结构 1、为什么使用索引 概念: 索引是存储索引用于快速找到数据记录的一种数据结构,就好比一本书的目录部分,通过目录中对应的文章的页码,便可以快速定位到需要的文章,Mysql 中也是一样的道理,进行数据查找时首先查看查询条件是否...
    99+
    2017-04-22
    关于Mysql索引的数据结构
  • 关于 Java 的数据结构链表
    目录数据结构关于 Java 的链表1. 删除链表中等于给定值 val 的所有节点2. 反转一个单链表3. 给定一个带有头结点 head 的非空单链表4. 输入一个链表,输出该链表中倒...
    99+
    2024-04-02
  • 关于dataguard需要查询的数据字典
    主库: v$managed_standby v$archive_dest_status v$archive_dest 备库: v$archived_log 解释:关于V$ARCHI...
    99+
    2024-04-02
  • 【Python】基础数据结构:列表——元组——字典——集合
    文章目录 一、简述二、Python中的列表详解2.1 创建列表2.2 访问列表元素2.3 修改列表元素2.4 列表切片2.5 列表方法2.6 列表推导式 三、Python中的元组详解3.1...
    99+
    2023-10-25
    python 数据结构 原力计划
  • python中常用的经典数据结构有哪些
    NumPy包中的数据结构NumPy中的数据结构,包括Ndarray、Matrix数组(Ndarray)创建Ndarray引入NumPy包,将其命名为np。在引入NumPy包后方可使用数组数据结构import numpy as np创建数组对...
    99+
    2023-05-14
    Python
  • Python中列表、字典、元组数据结构的简单学习笔记
    列表 列表是Python中最具灵活性的有序集合对象类型。与字符串不同的是,列表可以包含任何类型的对象:数字、字符串甚至其他列表。列表是可变对象,它支持原地修改的操作。 Python的列表是: 任意对象...
    99+
    2022-06-04
    数据结构 字典 学习笔记
  • Python中关于字典的知识有哪些
    本篇内容主要讲解“Python中关于字典的知识有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python中关于字典的知识有哪些”吧!字典(dict)dic是映射类型,由{}括起来的键值对组...
    99+
    2023-06-02
  • Python实现列表转换成字典数据结构的方法
    本文实例讲述了Python实现列表转换成字典数据结构的方法。分享给大家供大家参考,具体如下: ''' [ {'symbol': 101, 'sort': 1, 'name': 'aaaa'}, ...
    99+
    2022-06-04
    数据结构 转换成 字典
  • Redis数据结构中链表与字典的使用案例
    这篇文章主要介绍了Redis数据结构中链表与字典的使用案例,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。链表关于链表的基础概念其实你在学习Redis之前一定积累了不少,所以本...
    99+
    2023-06-15
  • 在matlab中怎么创建类似字典的数据结构
    本篇内容介绍了“在matlab中怎么创建类似字典的数据结构”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!matlab中创建类似字典的数据结构...
    99+
    2023-07-05
  • 易优eyoucms数据表结构和字段说明(数据字典)
    目录EyouCms概述优点缺点易优CMS数据字典ey_adey_ad_positioney_adminey_admin_logey_archivesey_arcmultiey_arc...
    99+
    2023-05-17
    易优cms数据表结构eyoucms数据表字段 易优eyoucms数据字典
  • 关于python访问字典的方法
    def stu( **kwargs): # 在函数体内对于kwargs的使用不用带星号 print("大家好,我为大家简单自我介绍以下:") print(type(kwargs)) # 对于字典的访问,python2...
    99+
    2023-01-30
    字典 方法 python
  • Redis数据结构之链表与字典的使用
    今天我们来聊一聊Redis中的链表与字典,具体如下: 链表 关于链表的基础概念其实你在学习Redis之前一定积累了不少,所以本文将默认你已经掌握了链表相关的基础知识,而Redis的链...
    99+
    2024-04-02
  • JavaScript数据结构之字典方法怎么用
    今天小编给大家分享一下JavaScript数据结构之字典方法怎么用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、什么是字...
    99+
    2023-06-30
  • Tungsten Fabric入门宝典丨关于多集群和多数据中心
    Tungsten Fabric入门宝典系列文章,来自技术大牛倾囊相授的实践经验,由TF中文社区为您编译呈现,旨在帮助新手深入理解TF的运行、安装、集成、调试等全流程。如果您有相关经验或疑问,欢迎与我们互动,并与社区极客们进一步交流。更多TF...
    99+
    2023-06-03
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作