Python 官方文档:入门教程 => 点击学习
目录Numpy 的 6 种高效函数argpartition()allclose()clip()extract()where()percentile()pandas 数据统计
大家好,今天给大家分享 12 个 python 函数,其中 Numpy 和 Pandas 各6个,这些实用的函数会令数据处理更为容易、便捷。
同时,你也可以在 GitHub 项目中找到本文所用代码的 Jupyter Notebook,欢迎收藏学习,喜欢点赞支持。
项目地址:https://github.com/kunaldhariwal/12-Amazing-Pandas-NumPy-Functions
首先从 Numpy 开始。Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。
除了上面这些明显的用途,Numpy 还可以用作通用数据的高效多维容器(container),定义任何数据类型。这使得 Numpy 能够实现自身与各种数据库的无缝、快速集成。
接下来一一解析 6 种 Numpy 函数。
借助于 argpartition(),Numpy 可以找出 N 个最大数值的索引,也会将找到的这些索引输出。然后我们根据需要对数值进行排序。
x = np.array([12, 10, 12, 0, 6, 8, 9, 1, 16, 4, 6, 0])index_val = np.argpartition(x, -4)[-4:]
index_val
array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val])
array([10, 12, 12, 16])
allclose() 用于匹配两个数组,并得到布尔值表示的输出。如果在一个公差范围内(within a tolerance)两个数组不等同,则 allclose() 返回 False。该函数对于检查两个数组是否相似非常有用。
array1 = np.array([0.12,0.17,0.24,0.29])
array2 = np.array([0.13,0.19,0.26,0.31])# with a tolerance of 0.1, it should return False:
np.allclose(array1,array2,0.1)
False# with a tolerance of 0.2, it should return True:
np.allclose(array1,array2,0.2)
True
Clip() 使得一个数组中的数值保持在一个区间内。有时,我们需要保证数值在上下限范围内。为此,我们可以借助 Numpy 的 clip() 函数实现该目的。给定一个区间,则区间外的数值被剪切至区间上下限(interval edge)。
x = np.array([3, 17, 14, 23, 2, 2, 6, 8, 1, 2, 16, 0])np.clip(x,2,5)
array([3, 5, 5, 5, 2, 2, 5, 5, 2, 2, 5, 2])
顾名思义,extract() 是在特定条件下从一个数组中提取特定元素。借助于 extract(),我们还可以使用 and 和 or 等条件。
# Random integers
array = np.random.randint(20, size=12)
array
array([ 0, 1, 8, 19, 16, 18, 10, 11, 2, 13, 14, 3])# Divide by 2 and check if remainder is 1
cond = np.mod(array, 2)==1
cond
array([False, True, False, True, False, False, False, True, False, True, False, True])# Use extract to get the values
np.extract(cond, array)
array([ 1, 19, 11, 13, 3])# Apply condition on extract directly
np.extract(((array < 3) | (array > 15)), array)
array([ 0, 1, 19, 16, 18, 2])
Where() 用于从一个数组中返回满足特定条件的元素。比如,它会返回满足特定条件的数值的索引位置。Where() 与 sql 中使用的 where condition 类似,如以下示例所示:
y = np.array([1,5,6,8,1,7,3,6,9])# Where y is greater than 5, returns index position
np.where(y>5)
array([2, 3, 5, 7, 8], dtype=int64),)# First will replace the values that match the condition,
# second will replace the values that does not
np.where(y>5, "Hit", "Miss")
array([ Miss , Miss , Hit , Hit , Miss , Hit , Miss , Hit , Hit ],dtype= <U4 )
Percentile() 用于计算特定轴方向上数组元素的第 n 个百分位数。
a = np.array([1,5,6,8,1,7,3,6,9])
print("50th Percentile of a, axis = 0 : ", np.percentile(a, 50, axis =0))
50th Percentile of a, axis = 0 : 6.0
b = np.array([[10, 7, 4], [3, 2, 1]])
print("30th Percentile of b, axis = 0 : ", np.percentile(b, 30, axis =0))
30th Percentile of b, axis = 0 : [5.1 3.5 1.9]
这就是 Numpy 扩展包的 6 种高效函数,相信会为你带来帮助。接下来看一看 Pandas 数据分析库的 6 种函数。
Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力的数据结构,旨在使处理结构化 (表格化、多维、异构) 和时间序列数据变得既简单又直观。
Pandas 适用于以下各类数据:
Pandas 擅长处理的类型如下所示:
大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。
import io
import requests# I am using this online data set just to make things easier for you guys
url = "Https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/datasets/AirPassengers.csv"
s = requests.get(url).content# read only first 10 rows
df = pd.read_csv(io.StringIO(s.decode( utf-8 )),nrows=10 , index_col=0)
map( ) 函数根据相应的输入来映射 Series 的值。用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。
# create a dataframe
dframe = pd.DataFrame(np.random.randn(4, 3), columns=list( bde ), index=[ India , USA , China , Russia ])#compute a fORMatted string from each floating point value in frame
changefn = lambda x: %.2f % x# Make changes element-wise
dframe[ d ].map(changefn)
apply() 允许用户传递函数,并将其应用于 Pandas 序列中的每个值。
# max minus mix lambda fn
fn = lambda x: x.max() - x.min()# Apply this on dframe that we ve just created above
dframe.apply(fn)
lsin () 用于过滤数据帧。Isin () 有助于选择特定列中具有特定(或多个)值的行。
# Using the dataframe we created for read_csv
filter1 = df["value"].isin([112])
filter2 = df["time"].isin([1949.000000])df [filter1 & filter2]
Copy () 函数用于复制 Pandas 对象。当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。
# creating sample series
data = pd.Series([ India , Pakistan , China , MonGolia ])# Assigning issue that we face
data1= data
# Change a value
data1[0]= USA
# Also changes value in old dataframe
data# To prevent that, we use
# creating copy of series
new = data.copy()# assigning new values
new[1]= Changed value # printing data
print(new)
print(data)
select_dtypes() 的作用是,基于 dtypes 的列返回数据帧列的一个子集。这个函数的参数可设置为包含所有拥有特定数据类型的列,亦或者设置为排除具有特定数据类型的列。
# We ll use the same dataframe that we used for read_csv
framex = df.select_dtypes(include="float64")# Returns only time column
最后,pivot_table( ) 也是 Pandas 中一个非常有用的函数。如果对 pivot_table( ) 在 excel 中的使用有所了解,那么就非常容易上手了。
# Create a sample dataframe
school = pd.DataFrame({ A : [ Jay , Usher , Nicky , Romero , Will ],
B : [ Masters , Graduate , Graduate , Masters , Graduate ],
C : [26, 22, 20, 23, 24]})# Lets create a pivot table to segregate students based on age and course
table = pd.pivot_table(school, values = A , index =[ B , C ],
columns =[ B ], aggfunc = np.sum, fill_value="Not Available")
table
欢迎转载、收藏、有所收获点赞支持一下!
到此这篇关于辅助Python 数据处理更容易的12个函数总结的文章就介绍到这了,更多相关Python 数据处理内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
--结束END--
本文标题: Python 数据处理更容易的12个辅助函数总结
本文链接: https://lsjlt.com/news/157452.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0