返回顶部
首页 > 资讯 > 后端开发 > Python >Python人工智能之混合高斯模型运动目标检测详解分析
  • 137
分享到

Python人工智能之混合高斯模型运动目标检测详解分析

2024-04-02 19:04:59 137人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

【人工智能项目】混合高斯模型运动目标检测 本次工作主要对视频中运动中的人或物的边缘背景进行检测。 那么走起来瓷!!! 原视频 高斯算法提取工作 import cv2 impo

人工智能项目】混合高斯模型运动目标检测

在这里插入图片描述

本次工作主要对视频中运动中的人或物的边缘背景进行检测。
那么走起来瓷!!!

原视频

在这里插入图片描述

高斯算法提取工作


import cv2
import numpy as np

# 高斯算法
class gaussian:
    def __init__(self):
        self.mean = np.zeros((1, 3))
        self.covariance = 0
        self.weight = 0;
        self.Next = None
        self.Previous = None

class node:
    def __init__(self):
        self.pixel_s = None
        self.pixel_r = None
        self.no_of_components = 0
        self.Next = None

class Node1:
    def __init__(self):
        self.gauss = None
        self.no_of_comp = 0
        self.Next = None

covariance0 = 11.0
def Create_gaussian(info1, info2, info3):
    ptr = gaussian()
    if (ptr is not None):
        ptr.mean[1, 1] = info1
        ptr.mean[1, 2] = info2
        ptr.mean[1, 3] = info3
        ptr.covariance = covariance0
        ptr.weight = 0.002
        ptr.Next = None
        ptr.Previous = None

    return ptr

def Create_Node(info1, info2, info3):
    N_ptr = Node()
    if (N_ptr is not None):
        N_ptr.Next = None
        N_ptr.no_of_components = 1
        N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3)

    return N_ptr

List_node = []
def Insert_End_Node(n):
    List_node.append(n)

List_gaussian = []
def Insert_End_gaussian(n):
    List_gaussian.append(n)

def Delete_gaussian(n):
    List_gaussian.remove(n);

class Process:
    def __init__(self, alpha, firstFrame):
        self.alpha = alpha
        self.background = firstFrame

    def get_value(self, frame):
        self.background = frame * self.alpha + self.background * (1 - self.alpha)
        return cv2.absdiff(self.background.astype(np.uint8), frame)

def denoise(frame):
    frame = cv2.medianBlur(frame, 5)
    frame = cv2.GaussianBlur(frame, (5, 5), 0)

    return frame

capture = cv2.VideoCapture('1.mp4')
ret, orig_frame = capture.read( )
if ret is True:
    value1 = Process(0.1, denoise(orig_frame))
    run = True
else:
    run = False

while (run):
    ret, frame = capture.read()
    value = False;
    if ret is True:
        cv2.imshow('input', denoise(frame))
        grayscale = value1.get_value(denoise(frame))
        ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY)
        cv2.imshow('mask', mask)
        key = cv2.waiTKEy(10) & 0xFF
    else:
        break

    if key == 27:
        break

    if value == True:
        orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC)
        orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY)
        orig_image_row = len(orig_frame)
        orig_image_col = orig_frame[0]

        bin_frame = np.zeros((orig_image_row, orig_image_col))
        value = []

        for i in range(0, orig_image_row):
            for j in range(0, orig_image_col):
                N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2])
                if N_ptr is not None:
                    N_ptr.pixel_s.weight = 1.0
                    Insert_End_Node(N_ptr)
                else:
                    print("error")
                    exit(0)

        nL = orig_image_row
        nC = orig_image_col

        dell = np.array((1, 3));
        mal_dist = 0.0;
        temp_cov = 0.0;
        alpha = 0.002;
        cT = 0.05;
        cf = 0.1;
        cfbar = 1.0 - cf;
        alpha_bar = 1.0 - alpha;
        prune = -alpha * cT;
        cthr = 0.00001;
        var = 0.0
        muG = 0.0;
        muR = 0.0;
        muB = 0.0;
        dR = 0.0;
        dB = 0.0;
        dG = 0.0;
        rval = 0.0;
        gval = 0.0;
        bval = 0.0;

        while (1):
            duration3 = 0.0;
            count = 0;
            count1 = 0;
            List_node1 = List_node;
            counter = 0;
            duration = cv2.getTickCount( );
            for i in range(0, nL):
                r_ptr = orig_frame[i]
                b_ptr = bin_frame[i]

                for j in range(0, nC):
                    sum = 0.0;
                    sum1 = 0.0;
                    close = False;
                    background = 0;

                    rval = r_ptr[0][0];
                    gval = r_ptr[0][0];
                    bval = r_ptr[0][0];

                    start = List_node1[counter].pixel_s;
                    rear = List_node1[counter].pixel_r;
                    ptr = start;

                    temp_ptr = None;
                    if (List_node1[counter].no_of_component > 4):
                        Delete_gaussian(rear);
                        List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;

                    for k in range(0, List_node1[counter].no_of_component):
                        weight = List_node1[counter].weight;
                        mult = alpha / weight;
                        weight = weight * alpha_bar + prune;
                        if (close == False):
                            muR = ptr.mean[0];
                            muG = ptr.mean[1];
                            muB = ptr.mean[2];

                            dR = rval - muR;
                            dG = gval - muG;
                            dB = bval - muB;

                            var = ptr.covariance;

                            mal_dist = (dR * dR + dG * dG + dB * dB);

                            if ((sum < cfbar) and (mal_dist < 16.0 * var * var)):
                                background = 255;

                            if (mal_dist < (9.0 * var * var)):
                                weight = weight + alpha;
                                if mult < 20.0 * alpha:
                                    mult = mult;
                                else:
                                    mult = 20.0 * alpha;

                                close = True;

                                ptr.mean[0] = muR + mult * dR;
                                ptr.mean[1] = muG + mult * dG;
                                ptr.mean[2] = muB + mult * dB;
                                temp_cov = var + mult * (mal_dist - var);
                                if temp_cov < 5.0:
                                    ptr.covariance = 5.0
                                else:
                                    if (temp_cov > 20.0):
                                        ptr.covariance = 20.0
                                    else:
                                        ptr.covariance = temp_cov;

                                temp_ptr = ptr;

                        if (weight < -prune):
                            ptr = Delete_gaussian(ptr);
                            weight = 0;
                            List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;
                        else:
                            sum += weight;
                            ptr.weight = weight;

                        ptr = ptr.Next;

                    if (close == False):
                        ptr = gaussian( );
                        ptr.weight = alpha;
                        ptr.mean[0] = rval;
                        ptr.mean[1] = gval;
                        ptr.mean[2] = bval;
                        ptr.covariance = covariance0;
                        ptr.Next = None;
                        ptr.Previous = None;
                        Insert_End_gaussian(ptr);
                        List_gaussian.append(ptr);
                        temp_ptr = ptr;
                        List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1;

                    ptr = start;
                    while (ptr != None):
                        ptr.weight = ptr.weight / sum;
                        ptr = ptr.Next;

                    while (temp_ptr != None and temp_ptr.Previous != None):
                        if (temp_ptr.weight <= temp_ptr.Previous.weight):
                            break;
                        else:
                            next = temp_ptr.Next;
                            previous = temp_ptr.Previous;
                            if (start == previous):
                                start = temp_ptr;
                                previous.Next = next;
                                temp_ptr.Previous = previous.Previous;
                                temp_ptr.Next = previous;
                            if (previous.Previous != None):
                                previous.Previous.Next = temp_ptr;
                            if (next != None):
                                next.Previous = previous;
                            else:
                                rear = previous;
                                previous.Previous = temp_ptr;

                        temp_ptr = temp_ptr.Previous;

                    List_node1[counter].pixel_s = start;
                    List_node1[counter].pixel_r = rear;
                    counter = counter + 1;

capture.release()
cv2.destroyAllwindows()

在这里插入图片描述

createBackgroundSubtractORMOG2

  • 背景减法 (BS) 是一种常用且广泛使用的技术,用于通过使用静态相机生成前景蒙版(即,包含属于场景中运动物体的像素的二值图像)。
  • 顾名思义,BS 计算前景蒙版,在当前帧和背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般地说,根据观察到的场景的特征,可以将所有内容视为背景。

在这里插入图片描述

背景建模包括两个主要步骤:

  • 后台初始化;
  • 背景更新。

在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。


import cv2

#构造VideoCapture对象
cap = cv2.VideoCapture('1.mp4')

# 创建一个背景分割器
# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值
# detectShadows=True,表示检测阴影,反之不检测阴影。默认是true
fgbg  = cv2.createBackgroundSubtractorMOG2()
while True :
    ret, frame = cap.read() # 读取视频
    fgmask = fgbg.apply(frame) # 背景分割
    cv2.imshow('frame', fgmask) # 显示分割结果
    if cv2.waitKey(100) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

小结

点赞评论走起来,瓷们!!!

在这里插入图片描述

到此这篇关于python人工智能之混合高斯模型运动目标检测详解分析的文章就介绍到这了,更多相关Python 高斯模型运动目标检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python人工智能之混合高斯模型运动目标检测详解分析

本文链接: https://lsjlt.com/news/156587.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python人工智能之混合高斯模型运动目标检测详解分析
    【人工智能项目】混合高斯模型运动目标检测 本次工作主要对视频中运动中的人或物的边缘背景进行检测。 那么走起来瓷!!! 原视频 高斯算法提取工作 import cv2 impo...
    99+
    2024-04-02
  • 详解Python人工智能混合高斯模型运动目标检测
    本篇内容主要讲解“详解Python人工智能混合高斯模型运动目标检测”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“详解Python人工智能混合高斯模型运动目标检测”吧!高斯算法提取工作import...
    99+
    2023-06-25
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作