返回顶部
首页 > 资讯 > 后端开发 > Python >TensorFlow卷积神经网络MNIST数据集实现示例
  • 613
分享到

TensorFlow卷积神经网络MNIST数据集实现示例

2024-04-02 19:04:59 613人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

这里使用Tensorflow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这

这里使用Tensorflow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络。


import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
print("MNIST ready")
sess = tf.InteractiveSession()
# 定义好初始化函数以便重复使用。给权重制造一些随机噪声来打破完全对称,使用截断的正态分布,标准差设为0.1,
# 同时因为使用relu,也给偏执增加一些小的正值(0.1)用来避免死亡节点(dead neurons)
def weight_variable(shape):
    initial = tf.truncated_nORMal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 参数分别指定了卷积核的尺寸、多少个channel、filter的个数即产生特征图的个数

# 2x2最大池化,即将一个2x2的像素块降为1x1的像素。最大池化会保留原始像素块中灰度值最高的那一个像素,即保留最显著的特征。
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

n_input  = 784 # 28*28的灰度图,像素个数784
n_output = 10  # 是10分类问题

# 在设计网络结构前,先定义输入的placeholder,x是特征,y是真实的label
x = tf.placeholder(tf.float32, [None, n_input]) 
y = tf.placeholder(tf.float32, [None, n_output]) 
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 对图像做预处理,将1D的输入向量转为2D的图片结构,即1*784到28*28的结构,-1代表样本数量不固定,1代表颜色通道数量

# 定义第一个卷积层,使用前面写好的函数进行参数初始化,包括weight和bias
W_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# fc1,将两次池化后的7*7共128个特征图转换为1D向量,隐含节点1024由自己定义
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# Dropout层输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
pred = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #前向传播的预测值,
print("CNN READY")

# 定义损失函数为交叉熵损失函数
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1]))
# 优化器
optm = tf.train.AdamOptimizer(0.001).minimize(cost)
# 定义评测准确率的操作
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # 对比预测值的索引和真实label的索引是否一样,一样返回True,不一样返回False
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
# 初始化所有参数
tf.global_variables_initializer().run()
print("FUNCTIONS READY")

training_epochs = 1000 # 所有样本迭代1000次
batch_size = 100 # 每进行一次迭代选择100个样本
display_step = 1
for i in range(training_epochs):
    avg_cost = 0.
    total_batch = int(mnist.train.num_examples/batch_size)
    batch = mnist.train.next_batch(batch_size)
    optm.run(feed_dict={x:batch[0], y:batch[1], keep_prob:0.7})
    avg_cost += sess.run(cost, feed_dict={x:batch[0], y:batch[1], keep_prob:1.0})/total_batch
    if i % display_step ==0: # 每10次训练,对准确率进行一次测试
        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y:batch[1], keep_prob:1.0})
        test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
        print("step: %d  cost: %.9f  TRAIN ACCURACY: %.3f  TEST ACCURACY: %.3f" % (i, avg_cost, train_accuracy, test_accuracy))
print("DONE")

训练迭代1000次之后,测试分类正确率达到了98.6%

step: 999  cost: 0.000048231  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.986

在2000次的时候达到了99.1%

step: 2004  cost: 0.000042901  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.991

相比之前简单神经网络,CNN的效果明显较好,这其中主要的性能提升都来自于更优秀的网络设计,即卷积神经网络对图像特征的提取和抽象能力。依靠卷积核的权值共享,CNN的参数量并没有爆炸,降低计算量的同时也减轻了过拟合,因此整个模型的性能有较大的提升。

以上就是TensorFlow卷积神经网络MNIST数据集实现示例的详细内容,更多关于TensorFlow卷积神经网络MNIST数据集的资料请关注编程网其它相关文章!

--结束END--

本文标题: TensorFlow卷积神经网络MNIST数据集实现示例

本文链接: https://lsjlt.com/news/156363.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • TensorFlow卷积神经网络MNIST数据集实现示例
    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集。网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这...
    99+
    2024-04-02
  • TensorFlow卷积神经网络MNIST数据集实现方法是什么
    本篇内容主要讲解“TensorFlow卷积神经网络MNIST数据集实现方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“TensorFlow卷积神经网络MNIST数据集实现方法是什么”吧!...
    99+
    2023-06-25
  • TensorFlow卷积神经网络AlexNet实现示例详解
    2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,它可以算是LeNet的一种更深更宽的版本。AlexNet以显著的优势赢得了竞争激...
    99+
    2024-04-02
  • 怎么用TensorFlow实现卷积神经网络
    这篇文章主要介绍“怎么用TensorFlow实现卷积神经网络”,在日常操作中,相信很多人在怎么用TensorFlow实现卷积神经网络问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用TensorFlow实现...
    99+
    2023-06-25
  • Pytorch搭建简单的卷积神经网络(CNN)实现MNIST数据集分类任务
    目录关于一些代码里的解释,可以看我上一篇发布的文章,里面有很详细的介绍!!!第一步:基本库的导入第二步:引用MNIST数据集,这里采用的是torchvision自带的MNIST数据集...
    99+
    2023-03-23
    Pytorch卷积神经网络 Pytorch MNIST数据集分类
  • TensorFlow中的卷积神经网络是如何实现的
    在TensorFlow中,卷积神经网络(CNN)的实现通常涉及以下步骤: 定义输入数据:首先,需要定义CNN的输入数据,通常是一...
    99+
    2024-03-01
    TensorFlow
  • 如何用tensorflow搭建卷积神经网络
    要用TensorFlow搭建卷积神经网络(CNN),首先需要导入TensorFlow库并定义网络的结构。以下是一个简单的示例代码,展...
    99+
    2024-04-03
    tensorflow
  • TensorFlow神经网络创建多层感知机MNIST数据集
    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率。 前文传送门: TensorFlow教程Softmax逻...
    99+
    2024-04-02
  • Pytorch卷积神经网络resent网络实践
    目录前言一、技术介绍二、实现途径三、总结前言 上篇文章,讲了经典卷积神经网络-resnet,这篇文章通过resnet网络,做一些具体的事情。 一、技术介绍 总的来说,第一步首先要加载...
    99+
    2024-04-02
  • Caffe卷积神经网络数据层及参数实例分析
    这篇文章主要介绍了Caffe卷积神经网络数据层及参数实例分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Caffe卷积神经网络数据层及参数实例分析文章都会有所收获,下面我们一起来看看吧。引言要运行caffe,...
    99+
    2023-07-02
  • Python中如何实现卷积神经网络
    这篇文章主要介绍了Python中如何实现卷积神经网络,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、卷积神经网络Yann LeCun 和Yoshua Bengio在1995...
    99+
    2023-06-15
  • Lasagne中怎么实现卷积神经网络
    Lasagne是一个轻量级的神经网络库,可以很容易地实现卷积神经网络。 以下是一个简单的示例,展示如何在Lasagne中实现一个简单...
    99+
    2024-04-02
  • Caffe卷积神经网络数据层及参数
    目录引言数据层1、数据来自于数据库(如LevelDB和LMDB)2、数据来自于内存3、数据来自于HDF54、数据来自于图片5、数据来源于Windows引言 要运行caffe,需要先创...
    99+
    2024-04-02
  • python人工智能tensorflow构建卷积神经网络CNN
    目录简介隐含层介绍1、卷积层2、池化层3、全连接层具体实现代码卷积层、池化层与全连接层实现代码全部代码学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定...
    99+
    2024-04-02
  • tensorflow卷积神经Inception V3网络结构代码解析
    目录前言1 非Inception Module的普通卷积层2 三个Inception模块组3 Auxiliary Logits、全局平均池化、Softmax分类前言 学习了Incep...
    99+
    2024-04-02
  • Python神经网络TensorFlow基于CNN卷积识别手写数字
    目录基础理论一、训练CNN卷积神经网络1、载入数据2、改变数据维度3、归一化4、独热编码5、搭建CNN卷积神经网络5-1、第一层:第一个卷积层5-2、第二层:第二个卷积层5-3、扁平...
    99+
    2024-04-02
  • PyTorch中的卷积神经网络怎么实现
    在PyTorch中,可以使用torch.nn模块中的Conv2d类来实现卷积神经网络。以下是一个简单的示例,展示如何在PyTorch...
    99+
    2024-03-05
    PyTorch
  • TensorFlow深度学习另一种程序风格实现卷积神经网络
    import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data...
    99+
    2024-04-02
  • Python深度学习之实现卷积神经网络
    目录一、卷积神经网络二、网络架构三、卷积四、卷积层五、在Keras中构建卷积层六、池化层七、全连接层八、Python实现卷积神经网络九、总结一、卷积神经网络 Yann LeCun 和...
    99+
    2024-04-02
  • PyTorch实现卷积神经网络的搭建详解
    目录PyTorch中实现卷积的重要基础函数1、nn.Conv2d:2、nn.MaxPool2d(kernel_size=2)3、nn.ReLU()4、x.view()全部代码PyTo...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作