Python 官方文档:入门教程 => 点击学习
目录1.groupby + agg2. crosstab3.groupby + pivotpivot_table总结用python里的pandas可以实现,虽然感觉excel更方便
用python里的pandas可以实现,虽然感觉excel更方便
不够直观,不好看
对贷款年份,贷款种类创建数据透视
train_data.groupby(['year_of_loan', 'class']).agg(d_roat =('isDefault', 'mean'))
pandas.crosstab(index, columns,values, rownames=None, colnames,
aggfunc, margins, margins_name, dropna, nORMalize)
主要用到的参数:
index:
选哪个变量做数据透视表的行
columns:
选哪个变量做数据透视表的列
values:
要聚合的值
aggfunc:
使用的聚合函数
margins:
是否添加汇总列/行
margins_name:
汇总行/列的名字
例子
对贷款年份,贷款种类创建数据透视
pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['loan_id'], aggfunc='count',margins = True, margins_name = '合计')
可以直接看出交叉组合之后违约比例
pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['isDefault'], aggfunc='mean')
train_data.groupby(['year_of_loan', 'class'], as_index = False)['isDefault'].mean().pivot('year_of_loan', 'class', 'isDefault')
pandas.pivot_table(data, values, index, columns, aggfunc, fill_value,
margins, dropna, margins_name, observed, sort)
常用参数与crosstab一致
例子
实现同样的数据透视表
pandas.pivot_table(data, values, index, columns, aggfunc, fill_value,
margins, dropna, margins_name, observed, sort)
pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']],
values='isDefault', index=['year_of_loan'], columns=['class'],
aggfunc='mean')
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!
--结束END--
本文标题: Python实现数据透视表详解
本文链接: https://lsjlt.com/news/155747.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0