返回顶部
首页 > 资讯 > 后端开发 > Python >Python数学建模StatsModels统计回归可视化示例详解
  • 611
分享到

Python数学建模StatsModels统计回归可视化示例详解

2024-04-02 19:04:59 611人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录1、如何认识可视化?2、StatsModels 绘图工具包 (Graphics)3、Matplotlib 绘图工具包4、Seaborn 绘图工具包5、多元回归案例分析(Stats

1、如何认识可视化?

需要指出的是,虽然不同绘图工具包的功能、效果会有差异,但在常用功能上相差并不是很大。与选择哪种绘图工具包相比,更重要的是针对不同的问题,需要思考选择什么方式、何种图形去展示分析过程和结果。换句话说,可视化只是手段和形式,手段要为目的服务,形式要为内容服务,这个关系一定不能颠倒了。

因此,可视化是伴随着分析问题、解决问题的过程而进行思考、设计和实现的,而且还会影响问题的分析和解决过程:

  • 可视化工具是数据探索的常用手段

回归分析是基于数据的建模,在导入数据后首先要进行数据探索,对给出的或收集的数据有个大概的了解,主要包括数据质量探索和数据特征分析。数据准备中的异常值分析,往往就需要用到箱形图(Boxplot)。对于数据特征的分析,经常使用频率分布图或频率分布直方图(Hist),饼图(Pie)。

  • 分析问题需要可视化工具的帮助

对于问题中变量之间的关系,有些可以通过定性分析来确定或猜想,需要进一步的验证,有些复杂关系难以由分析得到,则要通过对数据进行初步的相关分析来寻找线索。在分析问题、尝试求解的过程中,虽然可以得到各种统计量、特征值,但可视化图形能提供更快捷、直观、丰富的信息,对于发现规律、产生灵感很有帮助。

  • 解题过程需要可视化工具的支持

在解决问题的过程中,也经常会希望尽快获得初步的结果、总体的评价,以便确认解决问题的思路和方法是否正确。这些情况下,我们更关心的往往是绘图的便捷性,图形的表现效果反而是次要的。

  • 可视化是结果发布的重要内容

问题解决之后需要对结果进行呈现或发表,这时则需要结合表达的需要,特别是表达的逻辑框架,设计可视化的方案,选择适当的图形种类和形式,准备图形数据。在此基础上,才谈得上选择何种绘图工具包,如何呈现更好的表现效果。

2、StatsModels 绘图工具包 (Graphics)

Statsmodels 本身支持绘图功能(Graphics),包括拟合图(Fit Plots)、箱线图(Box Plots)、相关图(Correlation Plots)、函数图(Functional Plots)、回归图(Regression Plots)和时间序列图(Time Series Plots)。

Statsmodels 内置绘图功能 Graphics 的使用似乎并不流行,网络上的介绍也不多。分析其原因,一是 Graphics 做的并不太好用,文档和例程不友好,二是学习成本高:能用通用的可视化包实现的功能,何必还要花时间去学习一个专用的 Graphics?

下面是 Statsmodels 官方文档的例程,最简单的单变量线性回归问题,绘制样本数据散点图和拟合直线图。Graphics 提供了将拟合与绘图合二为一的函数 qqline(),但是为了绘制出样本数据则要调用 Matplotlib 的 matplotlib.pyplot.scatter(),所以…


import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.graphics.Gofplots import qqline
foodexp = sm.datasets.engel.load(as_pandas=False)
x = foodexp.exog
y = foodexp.endog
ax = plt.subplot(111)
plt.scatter(x, y)
qqline(ax, "r", x, y)
plt.show()
# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =

 

下图看起来有点象 Seaborn中的 relplot,但把官方文档研究了半天也没搞明白,只好直接分析例程和数据,最后的结论是:基本没啥用。

这大概就是更多用户直接选择 Python 的可视化工具包进行绘图的原因吧。最常用的当属 Matplotlib 无疑,而在统计回归分析中 Seaborn 绘图工具包则更好用更炫酷。

3、Matplotlib 绘图工具包

Matplotlib 绘图包就不用介绍了。Matplotlib 用于 Statsmodels 可视化,最大的优势在于Matplotlib 谁都会用,实现统计回归的基本图形的也很简单。如果需要复杂的图形,炫酷的效果,虽然 Matplotlib 原理上也能实现,但往往需要比较繁琐的数据准备,并不常用的函数和参数设置。既然学习成本高,出错概率大,就没必要非 Matplotlib 不可了。

Matplotlib 在统计回归问题中经常用到的是折线图、散点图、箱线图和直方图。这也是 Matplotlib 最常用的绘图形式,本系列文中也有相关例程,本文不再具体介绍相关函数的用法。

例如,在本系列《Python学习笔记-StatsModels 统计回归(2)线性回归》的例程和附图,不仅显示了原始检测数据、理论模型数据、拟合模型数据,而且给出了置信区间的上下限,看起来还是比较“高级”的。但是,如果把置信区间的边界线隐藏起来,图形马上就显得不那么“高级”,比较“平常”了——这就是选择什么方式、何种图形进行展示的区别。

 

由此所反映的问题,还是表达的逻辑和数据的准备:要表达什么内容,为什么要表达这个内容,有没有相应的数据?问题的关键并不是什么工具包或什么函数,更不是什么颜色什么线性,而是有没有置信区间上下限的数据。

如果需要复杂的图形,炫酷的效果,虽然 Matplotlib 原理上也能实现,但往往需要比较繁琐的数据准备,使用并不常用的函数和参数设置。学习成本高,出错概率大,就没必要非 Matplotlib 不可了。

4、Seaborn 绘图工具包

Seaborn 是在 Matplotlib 上构建的,支持 Scipy 和 Statamodels 的统计模型可视化,可以实现:

  • 赏心悦目的内置主题及颜色主题
  • 展示和比较 一维变量、二维变量 各变量的分布情况
  • 可视化 线性回归模型中的独立变量和关联变量
  • 可视化 矩阵数据,通过聚类算法探究矩阵间的结构
  • 可视化 时间序列,展示不确定性
  • 复杂的可视化,如在分割区域制图

Seaborn 绘图工具包以数据可视化为中心来挖掘与理解数据,本身就带有一定的统计回归功能,而且简单好用,特别适合进行定性分析、初步评价。

下图给出了几种常用的 Seaborn 图形,分别是带拟合线的直方图(distplot)、箱线图(boxplot)、散点图(scatterplot)和回归图(regplot),后文给出了对应的程序。

在这里插入图片描述

实际上,这些图形用 StatsModels Graphics、Matplotlib 也可以绘制,估计任何绘图包都可以实现。那么,为什么还要推荐 Seaborn 工具包,把这些图归入 Seaborn 的实例呢?我们来看看实现的例程就明白了:简单,便捷,舒服。不需要数据准备和变换处理,直接调用变量数据,自带回归功能;不需要复杂的参数设置,直接给出舒服的图形,自带图形风格设计。


    fig1, axes = plt.subplots(2, 2, figsize=(10, 8))  # 创建一个 2行 2列的画布
    sns.distplot(df['price'], bins=10, ax=axes[0, 0])  # axes[0,1] 左上图
    sns.boxplot(df['price'], df['sales'], data=df, ax=axes[0, 1])  # axes[0,1] 右上图
    sns.scatterplot(x=df['advertise'], y=df['sales'], ax=axes[1, 0])  # axes[1,0] 左下图
    sns.regplot(x=df['difference'], y=df['sales'], ax=axes[1, 1])  # axes[1,1] 右下图
    plt.show()

5、多元回归案例分析(Statsmodels)

5.1 问题描述

数据文件中收集了 30个月本公司牙膏销售量、价格、广告费用及同期的市场均价。
  (1)分析牙膏销售量与价格、广告投入之间的关系,建立数学模型;
  (2)估计所建立数学模型的参数,进行统计分析;
  (3)利用拟合模型,预测在不同价格和广告费用下的牙膏销售量。

 本问题及数据来自:姜启源、谢金星,数学模型(第 3版),高等教育出版社。

5.2 问题分析

本案例在Python数学建模StatsModels统计回归模型数据的准备中就曾出现,文中还提到该文的例程并不是最佳的求解方法和结果。

这是因为该文例程是直接将所有给出的特征变量(销售价格、市场均价、广告费、价格差)都作为自变量,直接进行线性回归。谢金星老师说,这不科学。科学的方法是先分析这些特征变量对目标变量(销量)的影响,然后选择能影响目标的特征变量,或者对特征变量进行适当变换(如:平方、对数)后,再进行线性回归。以下参考视频教程中的解题思路进行分析。

观察数据分布特征

案例问题的数据量很小,数据完整规范,实际上并不需要进行数据探索和数据清洗,不过可以看一下数据的分布特性。例程和结果如下,我是没看出什么名堂来,与正态分布的差距都不小。


    # 数据探索:分布特征
    fig1, axes = plt.subplots(2, 2, figsize=(10, 8))  # 创建一个 2行 2列的画布
    sns.distplot(dfData['price'], bins=10, ax=axes[0,0])  # axes[0,1] 左上图
    sns.distplot(dfData['average'], bins=10, ax=axes[0,1])  # axes[0,1] 右上图
    sns.distplot(dfData['advertise'], bins=10, ax=axes[1,0])  # axes[1,0] 左下图
    sns.distplot(dfData['difference'], bins=10, ax=axes[1,1])  # axes[1,1] 右下图
    plt.show()

在这里插入图片描述

观察数据间的相关性

既然将所有特征变量都作为自变量直接进行线性回归不科学,就要先对每个自变量与因变量的关系进行考察。


    # 数据探索:相关性
    fig2, axes = plt.subplots(2, 2, figsize=(10, 8))  # 创建一个 2行 2列的画布
    sns.regplot(x=dfData['price'], y=dfData['sales'], ax=axes[0,0])
    sns.regplot(x=dfData['average'], y=dfData['sales'], ax=axes[0,1])
    sns.regplot(x=dfData['advertise'], y=dfData['sales'], ax=axes[1,0])
    sns.regplot(x=dfData['difference'], y=dfData['sales'], ax=axes[1,1])
    plt.show()
    # = 关注 Youcans,分享原创系列 Https://blog.csdn.net/youcans =

在这里插入图片描述

单变量线性回归图还是很有价值的。首先上面两图(sales-price,sales-average)的数据点分散,与回归直线差的太远,说明与销量的相关性小——谢金星老师讲课中也是这样分析的。其次下面两图(sales-advertise,sales-difference)的线性度较高,至少比上图好多了,回归直线和置信区间也反映出线性关系。因此,可以将广告费(advertise)、价格差(difference)作为自变量建模进行线性回归。

进一步地,有人观察散点图后认为销量与广告费的关系(sales-advertise)更接近二次曲线,对此也可以通过回归图对 sales 与 advertise 进行高阶多项式回归拟合,结果如下图。

在这里插入图片描述

建模与拟合

模型1:将所有特征变量都作为自变量直接进行线性回归,这就是《模型数据的准备》中的方案。

模型 2:选择价格差(difference)、广告费(advertise)作为自变量建模进行线性回归。

模型 3:选择价格差(difference)、广告费(advertise)及广告费的平方项作为作为自变量建模进行线性回归。

下段给出了使用不同模型进行线性回归的例程和运行结果。对于这个问题的分析和结果讨论,谢金星老师在视频中讲的很详细,网络上也有不少相关文章。由于本文主要讲可视化,对结果就不做详细讨论了。

在这里插入图片描述

6、Python 例程(Statsmodels)

6.1 问题描述

数据文件中收集了 30个月本公司牙膏销售量、价格、广告费用及同期的市场均价。
  (1)分析牙膏销售量与价格、广告投入之间的关系,建立数学模型;
  (2)估计所建立数学模型的参数,进行统计分析;
  (3)利用拟合模型,预测在不同价格和广告费用下的牙膏销售量。

6.2 Python 程序


# LinearRegression_v4.py
# v4.0: 分析和结果的可视化
# 日期:2021-05-08
# Copyright 2021 YouCans, XUPT
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std
import matplotlib.pyplot as plt
import seaborn as sns
# 主程序 = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
def main():
    # 读取数据文件
    readPath = "../data/toothpaste.csv"  # 数据文件的地址和文件名
    dfOpenFile = pd.read_csv(readPath, header=0, sep=",")  # 间隔符为逗号,首行为标题行
    # 准备建模数据:分析因变量 Y(sales) 与 自变量 x1~x4  的关系
    dfData = dfOpenFile.dropna()  # 删除含有缺失值的数据
    sns.set_style('dark')
    # 数据探索:分布特征
    fig1, axes = plt.subplots(2, 2, figsize=(10, 8))  # 创建一个 2行 2列的画布
    sns.distplot(dfData['price'], bins=10, ax=axes[0,0])  # axes[0,1] 左上图
    sns.distplot(dfData['average'], bins=10, ax=axes[0,1])  # axes[0,1] 右上图
    sns.distplot(dfData['advertise'], bins=10, ax=axes[1,0])  # axes[1,0] 左下图
    sns.distplot(dfData['difference'], bins=10, ax=axes[1,1])  # axes[1,1] 右下图
    plt.show()
    # 数据探索:相关性
    fig2, axes = plt.subplots(2, 2, figsize=(10, 8))  # 创建一个 2行 2列的画布
    sns.regplot(x=dfData['price'], y=dfData['sales'], ax=axes[0,0])
    sns.regplot(x=dfData['average'], y=dfData['sales'], ax=axes[0,1])
    sns.regplot(x=dfData['advertise'], y=dfData['sales'], ax=axes[1,0])
    sns.regplot(x=dfData['difference'], y=dfData['sales'], ax=axes[1,1])
    plt.show()
    # 数据探索:考察自变量平方项的相关性
    fig3, axes = plt.subplots(1, 2, figsize=(10, 4))  # 创建一个 2行 2列的画布
    sns.regplot(x=dfData['advertise'], y=dfData['sales'], order=2, ax=axes[0])  # order=2, 按 y=b*x**2 回归
    sns.regplot(x=dfData['difference'], y=dfData['sales'], order=2, ax=axes[1])  # YouCans, XUPT
    plt.show()
    # 线性回归:分析因变量 Y(sales) 与 自变量 X1(Price diffrence)、X2(Advertise) 的关系
    y = dfData['sales']  # 根据因变量列名 list,建立 因变量数据集
    x0 = np.ones(dfData.shape[0])  # 截距列 x0=[1,...1]
    x1 = dfData['difference']  # 价格差,x4 = x1 - x2
    x2 = dfData['advertise']  # 广告费
    x3 = dfData['price']  # 销售价格
    x4 = dfData['average']  # 市场均价
    x5 = x2**2  # 广告费的二次元
    x6 = x1 * x2  # 考察两个变量的相互作用
    # Model 1:Y = b0 + b1*X1 + b2*X2 + e
    # # 线性回归:分析因变量 Y(sales) 与 自变量 X1(Price diffrence)、X2(Advertise) 的关系
    X = np.column_stack((x0,x1,x2))  # [x0,x1,x2]
    Model1 = sm.OLS(y, X)  # 建立 OLS 模型: Y = b0 + b1*X1 + b2*X2 + e
    result1 = Model1.fit()  # 返回模型拟合结果
    yFit1 = result1.fittedvalues  # 模型拟合的 y 值
    prstd, ivLow, ivUp = wls_prediction_std(result1) # 返回标准偏差和置信区间
    print(result1.summary())  # 输出回归分析的摘要
    print("\nModel1: Y = b0 + b1*X + b2*X2")
    print('Parameters: ', result1.params)  # 输出:拟合模型的系数
    # # Model 2:Y = b0 + b1*X1 + b2*X2 + b3*X3 + b4*X4 + e
    # 线性回归:分析因变量 Y(sales) 与 自变量 X1~X4 的关系
    X = np.column_stack((x0,x1,x2,x3,x4))  #[x0,x1,x2,...,x4]
    Model2 = sm.OLS(y, X)  # 建立 OLS 模型: Y = b0 + b1*X1 + b2*X2 + b3*X3 + e
    result2 = Model2.fit()  # 返回模型拟合结果
    yFit2 = result2.fittedvalues  # 模型拟合的 y 值
    prstd, ivLow, ivUp = wls_prediction_std(result2) # 返回标准偏差和置信区间
    print(result2.summary())  # 输出回归分析的摘要
    print("\nModel2: Y = b0 + b1*X + ... + b4*X4")
    print('Parameters: ', result2.params)  # 输出:拟合模型的系数
    # # Model 3:Y = b0 + b1*X1 + b2*X2 + b3*X2**2 + e
    # # 线性回归:分析因变量 Y(sales) 与 自变量 X1、X2 及 X2平方(X5)的关系
    X = np.column_stack((x0,x1,x2,x5))  # [x0,x1,x2,x2**2]
    Model3 = sm.OLS(y, X)  # 建立 OLS 模型: Y = b0 + b1*X1 + b2*X2 + b3*X2**2 + e
    result3 = Model3.fit()  # 返回模型拟合结果
    yFit3 = result3.fittedvalues  # 模型拟合的 y 值
    prstd, ivLow, ivUp = wls_prediction_std(result3) # 返回标准偏差和置信区间
    print(result3.summary())  # 输出回归分析的摘要
    print("\nModel3: Y = b0 + b1*X1 + b2*X2 + b3*X2**2")
    print('Parameters: ', result3.params)  # 输出:拟合模型的系数
    # 拟合结果绘图
    fig, ax = plt.subplots(figsize=(8,6))  # YouCans, XUPT
    ax.plot(range(len(y)), y, 'b-.', label='Sample')  # 样本数据
    ax.plot(range(len(y)), yFit3, 'r-', label='Fitting')  # 拟合数据
    # ax.plot(range(len(y)), yFit2, 'm--', label='fitting')  # 拟合数据
    ax.plot(range(len(y)), ivUp, '--',color='pink',label="ConfR")  # 95% 置信区间 上限
    ax.plot(range(len(y)), ivLow, '--',color='pink')  # 95% 置信区间 下限
    ax.legend(loc='best')  # 显示图例
    plt.title('Regression analysis with sales of toothpaste')
    plt.xlabel('period')
    plt.ylabel('sales')
    plt.show()
    return
if __name__ == '__main__':
    main()

6.3 程序运行结果:


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  sales   R-squared:                       0.886
Model:                            OLS   Adj. R-squared:                  0.878
Method:                 Least Squares   F-statistic:                     105.0
Date:                Sat, 08 May 2021   Prob (F-statistic):           1.84e-13
Time:                        22:18:04   Log-Likelihood:                 2.0347
No. Observations:                  30   AIC:                             1.931
Df Residuals:                      27   BIC:                             6.134
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          4.4075      0.722      6.102      0.000       2.925       5.890
x1             1.5883      0.299      5.304      0.000       0.974       2.203
x2             0.5635      0.119      4.733      0.000       0.319       0.808
==============================================================================
Omnibus:                        1.445   Durbin-Watson:                   1.627
Prob(Omnibus):                  0.486   jarque-Bera (JB):                0.487
Skew:                           0.195   Prob(JB):                        0.784
Kurtosis:                       3.486   Cond. No.                         115.
==============================================================================
Model1: Y = b0 + b1*X + b2*X2
Parameters:  
const    4.407493
x1       1.588286
x2       0.563482
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  sales   R-squared:                       0.895
Model:                            OLS   Adj. R-squared:                  0.883
Method:                 Least Squares   F-statistic:                     74.20
Date:                Sat, 08 May 2021   Prob (F-statistic):           7.12e-13
Time:                        22:18:04   Log-Likelihood:                 3.3225
No. Observations:                  30   AIC:                             1.355
Df Residuals:                      26   BIC:                             6.960
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          8.0368      2.480      3.241      0.003       2.940      13.134
x1             1.3832      0.288      4.798      0.000       0.791       1.976
x2             0.4927      0.125      3.938      0.001       0.236       0.750
x3            -1.1184      0.398     -2.811      0.009      -1.936      -0.300
x4             0.2648      0.199      1.332      0.195      -0.144       0.674
==============================================================================
Omnibus:                        0.141   Durbin-Watson:                   1.762
Prob(Omnibus):                  0.932   Jarque-Bera (JB):                0.030
Skew:                           0.052   Prob(JB):                        0.985
Kurtosis:                       2.885   Cond. No.                     2.68e+16
==============================================================================
Model2: Y = b0 + b1*X + ... + b4*X4
Parameters:  
const    8.036813
x1       1.383207
x2       0.492728
x3      -1.118418
x4       0.264789
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  sales   R-squared:                       0.905
Model:                            OLS   Adj. R-squared:                  0.894
Method:                 Least Squares   F-statistic:                     82.94
Date:                Sat, 08 May 2021   Prob (F-statistic):           1.94e-13
Time:                        22:18:04   Log-Likelihood:                 4.8260
No. Observations:                  30   AIC:                            -1.652
Df Residuals:                      26   BIC:                             3.953
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         17.3244      5.641      3.071      0.005       5.728      28.921
x1             1.3070      0.304      4.305      0.000       0.683       1.931
x2            -3.6956      1.850     -1.997      0.056      -7.499       0.108
x3             0.3486      0.151      2.306      0.029       0.038       0.659
==============================================================================
Omnibus:                        0.631   Durbin-Watson:                   1.619
Prob(Omnibus):                  0.729   Jarque-Bera (JB):                0.716
Skew:                           0.203   Prob(JB):                        0.699
Kurtosis:                       2.362   Cond. No.                     6.33e+03
==============================================================================
Model3: Y = b0 + b1*X1 + b2*X2 + b3*X2**2
Parameters:  
const    17.324369
x1        1.306989
x2       -3.695587
x3        0.348612

以上就是Python数学建模StatsModels统计回归可视化的详细内容,更多关于数学建模StatsModels统计回归的资料请关注编程网其它相关文章!

--结束END--

本文标题: Python数学建模StatsModels统计回归可视化示例详解

本文链接: https://lsjlt.com/news/154768.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python数学建模StatsModels统计回归可视化示例详解
    目录1、如何认识可视化?2、StatsModels 绘图工具包 (Graphics)3、Matplotlib 绘图工具包4、Seaborn 绘图工具包5、多元回归案例分析(Stats...
    99+
    2024-04-02
  • Python数学建模StatsModels统计回归之线性回归示例详解
    目录1、背景知识1.1 插值、拟合、回归和预测1.2 线性回归2、Statsmodels 进行线性回归2.1 导入工具包2.2 导入样本数据2.3 建模与拟合2.4 拟合和统计结果的...
    99+
    2024-04-02
  • Python数学建模库StatsModels统计回归简介初识
    目录1、关于 StatsModels2、文档3、主要功能4、获取和安装1、关于 StatsModels statsmodels(http://www.statsmodels.org)...
    99+
    2024-04-02
  • Python数学建模StatsModels统计回归模型数据的准备
    目录1、读取数据文件(1)读取 .csv 文件:(2)读取 .xls 文件:(3)读取 .txt 文件:2、数据文件的拆分与合并(1)将 Excel 文件分割为多个文件(2)将 多个...
    99+
    2024-04-02
  • Python数据结构之递归可视化详解
    目录1.学习目标2.递归的调用3.递归可视化3.1 turtle 库简介3.1 递归绘图1.学习目标 递归函数是直接调用自己或通过一系列语句间接调用自己的函数。递归在程序设计有着举足...
    99+
    2024-04-02
  • Python学习之模块化程序设计示例详解
    目录关于模块化程序设计水果仓库功能简介主功能实现与程序入口实现添加功能实现列出所有信息功能实现查询信息功能实现删除信息功能完整程序如下关于模块化程序设计 什么是模块化程序设计? 程序...
    99+
    2024-04-02
  • python可视化大屏库big_screen示例详解
    目录big_screen特点安装环境输入数据本地运行在线部署 对于从事数据领域的小伙伴来说,当需要阐述自己观点、展示项目成果时,我们需要在最短时间内让别人知道你的想法。我相信单调乏味...
    99+
    2024-04-02
  • Python pyecharts数据可视化实例详解
    目录一、数据可视化1.pyecharts介绍2.初入了解(1).快速上手(2).简单的配置项介绍3.案例实战(1).柱状图Bar(2).地图Map(3).饼图Pie(4).折线图Li...
    99+
    2024-04-02
  • Python制作可视化报表的示例详解
    大家好,我是小F~ 在数据展示中使用图表来分享自己的见解,是个非常常见的方法。 这也是Tableau、Power BI这类商业智能仪表盘持续流行的原因之一,这些工具为数据提供了精美的...
    99+
    2024-04-02
  • python数据可视化plt库实例详解
    先看下jupyter和pycharm环境的差别 左边是jupyter---------------------------------------------------------...
    99+
    2024-04-02
  • Python数据可视化绘图实例详解
    目录利用可视化探索图表1.数据可视化与探索图2.常见的图表实例数据探索实战分享1.2013年美国社区调查2.波士顿房屋数据集利用可视化探索图表 1.数据可视化与探索图 数据可视化是指...
    99+
    2024-04-02
  • python模拟投掷色子并数据可视化统计图
    目录前言1.模拟掷色子2.我们来模拟投掷两个色子前言 这里讲解模拟掷色子,并实现数据可视化的操作。数据可视化可以帮助我们更好地分析相关的统计结果,获得更为直观的统计图,帮组我们更好的...
    99+
    2024-04-02
  • Python echarts实现数据可视化实例详解
    目录1.概述2.安装3.数据可视化代码3.1 柱状图3.2 折线图3.3 饼图总结1.概述 pyecharts 是百度开源的,适用于数据可视化的工具,配置灵活,展示图表相对美观,顺滑...
    99+
    2024-04-02
  • python数据可视化pygal模拟掷骰子实现示例
    目录可视化包Pygal生成可缩放矢量图形文件分析结果,计算每个点数出现的次数绘制直方图同时投掷两个骰子同时投掷两个面数不同骰子可视化包Pygal生成可缩放矢量图形文件 可以在尺寸不同...
    99+
    2024-04-02
  • Python数学建模学习模拟退火算法多变量函数优化示例解析
    目录1、模拟退火算法2、多变量函数优化问题3、模拟退火算法 Python 程序4、程序运行结果1、模拟退火算法 退火是金属从熔融状态缓慢冷却、最终达到能量最低的平衡态的过程。模拟退火...
    99+
    2024-04-02
  • Python数学建模PuLP库线性规划入门示例详解
    目录1、什么是线性规划2、PuLP 库求解线性规划-(0)导入 PuLP库函数-(1)定义一个规划问题-(2)定义决策变量-(3)添加目标函数-(4)添加约束条件-(5)求解3、Py...
    99+
    2024-04-02
  • python数据可视化使用pyfinance分析证券收益示例详解
    目录pyfinance简介pyfinance包含六个模块returns模块应用实例收益率计算CAPM模型相关指标风险指标基准比较指标风险调整收益指标综合业绩评价指标分析实例结语pyf...
    99+
    2024-04-02
  • 分位数回归模型quantile regeression应用详解及示例教程
    目录什么是分位数?什么是分位数回归?statsmodels中的分位数回归分位数回归与线性回归xgboost的分位数回归普通最小二乘法如何处理异常值? 它对待一切事物都是一样的——它将...
    99+
    2024-04-02
  • Leaflet 数据可视化实现地图下钻示例详解
    目录前言获取GeoJson,如果有现成的可以本地导入。初始化地图渲染GeoJson地图&添加事件-核心部分App.vue中前言 说到地图下钻功能,做过可视化的应该都不陌生,...
    99+
    2023-01-04
    Leaflet 地图下钻 Leaflet数据可视化
  • 关于Python可视化Dash工具之plotly基本图形示例详解
    Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作